Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res Ther ; 12(1): 187, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33736701

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) have been studied with increasing intensity as clinicians and researchers strive to understand the ability of MSCs to modulate disease progression and promote tissue regeneration. As MSCs are used for diverse applications, it is important to appreciate how specific physiological environments may stimulate changes that alter the phenotype of the cells. One need for neuroregenerative applications is to characterize the spectrum of MSC responses to the cerebrospinal fluid (CSF) environment after their injection into the intrathecal space. Mechanistic understanding of cellular biology in response to the CSF environment may predict the ability of MSCs to promote injury repair or provide neuroprotection in neurodegenerative diseases. METHODS: In this study, we characterized changes in morphology, metabolism, and gene expression occurring in human adipose-derived MSCs cultured in human (hCSF) or artificial CSF (aCSF) as well as examined relevant protein levels in the CSF of subjects treated with MSCs for amyotrophic lateral sclerosis (ALS). RESULTS: Our results demonstrated that, under intrathecal-like conditions, MSCs retained their morphology, though they became quiescent. Large-scale transcriptomic analysis of MSCs revealed a distinct gene expression profile for cells cultured in aCSF. The aCSF culture environment induced expression of genes related to angiogenesis and immunomodulation. In addition, MSCs in aCSF expressed genes encoding nutritional growth factors to expression levels at or above those of control cells. Furthermore, we observed a dose-dependent increase in growth factors and immunomodulatory cytokines in CSF from subjects with ALS treated intrathecally with autologous MSCs. CONCLUSIONS: Overall, our results suggest that MSCs injected into the intrathecal space in ongoing clinical trials remain viable and may provide a therapeutic benefit to patients.


Subject(s)
Amyotrophic Lateral Sclerosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy , Cytokines , Humans , Immunomodulation , Transcriptome
2.
Exp Neurol ; 335: 113520, 2021 01.
Article in English | MEDLINE | ID: mdl-33129842

ABSTRACT

The neurotoxic effects of the chemotherapeutic agent bortezomib on dorsal root ganglia sensory neurons are well documented, yet the mechanistic underpinnings that govern these cellular processes remain incompletely understood. In this study, system-wide proteomic changes were identified in human induced pluripotent stem cell-derived sensory neurons (iSNs) exposed to a clinically relevant dose of bortezomib. Label-free mass spectrometry facilitated the identification of approximately 2800 iSN proteins that exhibited differential levels in the setting of bortezomib. A significant proportion of these proteins affect the cellular processes of microtubule dynamics, cytoskeletal and cytoplasmic organization, and molecular transport, and pathway analysis revealed an enrichment of proteins in signaling pathways attributable to the unfolded protein response and the integrated stress response. Alterations in microtubule-associated proteins suggest a multifaceted relationship exists between bortezomib-induced proteotoxicity and microtubule cytoskeletal architecture, and MAP2 was prioritized as a topmost influential candidate. We observed a significant reduction in the overall levels of MAP2c in somata without discernable changes in neurites. As MAP2 is known to affect cellular processes including axonogenesis, neurite extension and branching, and neurite morphology, its altered levels are suggestive of a prominent role in bortezomib-induced neurotoxicity.


Subject(s)
Microtubules/pathology , Neural Stem Cells/pathology , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/genetics , Proteomics , Sensory Receptor Cells/pathology , Adolescent , Aged , Bortezomib , Cells, Cultured , Female , Humans , Induced Pluripotent Stem Cells , Male , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurotoxicity Syndromes/pathology , Peripheral Nervous System Diseases/pathology , Young Adult
3.
Stem Cells Transl Med ; 6(10): 1829-1839, 2017 10.
Article in English | MEDLINE | ID: mdl-28924979

ABSTRACT

Human induced pluripotent stem cells (hiPSC) hold great promise in diagnostic and therapeutic applications. However, translation of hiPSC technology depends upon a means of assessing hiPSC quality that is quantitative, high-throughput, and can decipher malignant teratocarcinoma clones from normal cell lines. These attributes are lacking in current approaches such as detection of cell surface makers, RNA profiling, and/or teratoma formation assays. The latter remains the gold standard for assessing clone quality in hiPSCs, but is expensive, time-consuming, and incompatible with high-throughput platforms. Herein, we describe a novel method for determining hiPSC quality that exploits pluripotent cells' documented hypersensitivity to the topoisomerase inhibitor etoposide (CAS No. 33419-42-0). Based on a study of 115 unique hiPSC clones, we established that a half maximal effective concentration (EC50) value of <300 nM following 24 hours of exposure to etoposide demonstrated a positive correlation with RNA profiles and colony morphology metrics associated with high quality hiPSC clones. Moreover, our etoposide sensitivity assay (ESA) detected differences associated with culture maintenance, and successfully distinguished malignant from normal pluripotent clones independent of cellular morphology. Overall, the ESA provides a simple, straightforward method to establish hiPSC quality in a quantitative and functional assay capable of being incorporated into a generalized method for establishing a quality control standard for all types of pluripotent stem cells. Stem Cells Translational Medicine 2017;6:1829-1839.


Subject(s)
Colony-Forming Units Assay/methods , Etoposide/pharmacology , Induced Pluripotent Stem Cells/drug effects , Topoisomerase Inhibitors/pharmacology , Cells, Cultured , Clinical Trials as Topic , Humans , Induced Pluripotent Stem Cells/metabolism , Transcriptome
4.
Stem Cells ; 35(4): 1106-1119, 2017 04.
Article in English | MEDLINE | ID: mdl-28142228

ABSTRACT

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect (CHD) attributable to multifactorial molecular underpinnings. Multiple genetic loci have been implicated to increase the risk of disease, yet genotype-phenotype relationships remain poorly defined. Whole genome sequencing complemented by cardiac phenotype from five individuals in an HLHS-affected family enabled the identification of NOTCH1 as a prioritized candidate gene linked to CHD in three individuals with mutant allele burden significantly impairing Notch signaling in the HLHS-affected proband. To better understand a mechanistic basis through which NOTCH1 contributes to heart development, human induced pluripotent stem cells (hiPSCs) were created from the HLHS-affected parent-proband triad and differentiated into cardiovascular cell lineages for molecular characterization. HLHS-affected hiPSCs exhibited a deficiency in Notch signaling pathway components and a diminished capacity to generate hiPSC-cardiomyocytes. Optimization of conditions to procure HLHS-hiPSC-cardiomyocytes led to an approach that compensated for dysregulated nitric oxide (NO)-dependent Notch signaling in the earliest specification stages. Augmentation of HLHS-hiPSCs with small molecules stimulating NO signaling in the first 4 days of differentiation provided a cardiomyocyte yield equivalent to the parental hiPSCs. No discernable differences in calcium dynamics were observed between the bioengineered cardiomyocytes derived from the proband and the parents. We conclude that in vitro modeling with HLHS-hiPSCs bearing NOTCH1 mutations facilitated the discovery of a NO-dependent signaling component essential for cardiovascular cell lineage specification. Potentiation of NO signaling with small therapeutic molecules restored cardiogenesis in vitro and may identify a potential therapeutic target for patients affected by functionally compromised NOTCH1 variants. Stem Cells 2017;35:1106-1119.


Subject(s)
Bioengineering , Hypoplastic Left Heart Syndrome/metabolism , Hypoplastic Left Heart Syndrome/pathology , Nitric Oxide/metabolism , Organogenesis , Receptor, Notch1/metabolism , Signal Transduction , Adult , Calcium Signaling/drug effects , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Nitric Oxide Donors/pharmacology , Organogenesis/drug effects , Phenotype , Signal Transduction/drug effects
5.
Hum Genet ; 134(9): 1003-11, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26164125

ABSTRACT

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect (CHD) that necessitates staged, single ventricle surgical palliation. An increased frequency of bicuspid aortic valve (BAV) has been observed among relatives. We postulated number of mutant alleles as a molecular basis for variable CHD expression in an extended family comprised of an HLHS proband and four family members who underwent echocardiography and whole-genome sequencing (WGS). Dermal fibroblast-derived induced pluripotent stem cells (iPSC) were procured from the proband-parent trio and bioengineered into cardiomyocytes. Cardiac phenotyping revealed aortic valve atresia and a slit-like left ventricular cavity in the HLHS proband, isolated bicuspid pulmonary valve in his mother, BAV in a maternal 4° relative, and no CHD in his father or sister. Filtering of WGS for rare, functional variants that segregated with CHD and were compound heterozygous in the HLHS proband identified NOTCH1 as the sole candidate gene. An unreported missense mutation (P1964L) in the cytoplasmic domain, segregating with semilunar valve malformation, was maternally inherited and a rare missense mutation (P1256L) in the extracellular domain, clinically silent in the heterozygous state, was paternally inherited. Patient-specific iPSCs exhibited diminished transcript levels of NOTCH1 signaling pathway components, impaired myocardiogenesis, and a higher prevalence of heterogeneous myofilament organization. Extended, phenotypically characterized families enable WGS-derived variant filtering for plausible Mendelian modes of inheritance, a powerful strategy to discover molecular underpinnings of CHD. Identification of compound heterozygous NOTCH1 mutations and iPSC-based functional modeling implicate mutant allele burden and impaired myogenic potential as mechanisms for HLHS.


Subject(s)
Heterozygote , Hypoplastic Left Heart Syndrome/genetics , Receptor, Notch1/genetics , Aortic Valve/abnormalities , Bicuspid Aortic Valve Disease , Computational Biology , Female , Genetic Linkage , Genome-Wide Association Study , Genomics , Heart Valve Diseases , Humans , Male , Mutation , Pedigree
6.
J Biol Chem ; 278(42): 40905-10, 2003 Oct 17.
Article in English | MEDLINE | ID: mdl-12904297

ABSTRACT

Plasmodium falciparum sporozoites invade liver cells in humans and set the stage for malaria infection. Circumsporozoite protein (CSP), a predominant surface antigen on sporozoite surface, has been associated with the binding and invasion of liver cells by the sporozoites. Although CSP across the Plasmodium genus has homology and conserved structural organization, infection of a non-natural host by a species is rare. We investigated the role of CSP in providing the host specificity in P. falciparum infection. CSP from P. falciparum, P. gallinaceum, P. knowlesi, and P. yoelii species representing human, avian, simian, and rodent malaria species were recombinantly expressed, and the proteins were purified to homogeneity. The recombinant proteins were evaluated for their capacity to bind to human liver cell line HepG2 and to prevent P. falciparum sporozoites from invading these cells. The proteins showed significant differences in the binding and sporozoite invasion inhibition activity. Differences among proteins directly correlate with changes in the binding affinity to the sporozoite receptor on liver cells. P. knowlesi CSP (PkCSP) and P. yoelii CSP (PyCSP) had 4,790- and 17,800-fold lower affinity for heparin in comparison to P. falciparum CSP (PfCSP). We suggest that a difference in the binding affinity for the liver cell receptor is a mechanism involved in maintaining the host specificity by the malaria parasite.


Subject(s)
Host-Parasite Interactions , Plasmodium falciparum/pathogenicity , Protozoan Proteins/physiology , Animals , Cell Line, Tumor , Cloning, Molecular , Dose-Response Relationship, Drug , Heparin Lyase/pharmacology , Humans , Kinetics , Liver/cytology , Liver/parasitology , Protein Binding , Rats , Recombinant Proteins/metabolism , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...