Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 681
Filter
1.
JAMA Oncol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959011

ABSTRACT

Importance: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with increasing incidence. The majority of PDACs are incurable at presentation, but population-based screening is not recommended. Surveillance of high-risk individuals for PDAC may lead to early detection, but the survival benefit is unproven. Objective: To compare the survival of patients with surveillance-detected PDAC with US national data. Design, Setting, and Participants: This comparative cohort study was conducted in multiple US academic medical centers participating in the Cancer of the Pancreas Screening program, which screens high-risk individuals with a familial or genetic predisposition for PDAC. The comparison cohort comprised patients with PDAC matched for age, sex, and year of diagnosis from the Surveillance, Epidemiology, and End Results (SEER) program. The Cancer of the Pancreas Screening program originated in 1998, and data collection was done through 2021. The data analysis was performed from April 29, 2022, through April 10, 2023. Exposures: Endoscopic ultrasonography or magnetic resonance imaging performed annually and standard-of-care surgical and/or oncologic treatment. Main Outcomes and Measures: Stage of PDAC at diagnosis, overall survival (OS), and PDAC mortality were compared using descriptive statistics and conditional logistic regression, Cox proportional hazards regression, and competing risk regression models. Sensitivity analyses and adjustment for lead-time bias were also conducted. Results: A total of 26 high-risk individuals (mean [SD] age at diagnosis, 65.8 [9.5] years; 15 female [57.7%]) with PDAC were compared with 1504 SEER control patients with PDAC (mean [SD] age at diagnosis, 66.8 [7.9] years; 771 female [51.3%]). The median primary tumor diameter of the 26 high-risk individuals was smaller than in the control patients (2.5 [range, 0.6-5.0] vs 3.6 [range, 0.2-8.0] cm, respectively; P < .001). The high-risk individuals were more likely to be diagnosed with a lower stage (stage I, 10 [38.5%]; stage II, 8 [30.8%]) than matched control patients (stage I, 155 [10.3%]; stage II, 377 [25.1%]; P < .001). The PDAC mortality rate at 5 years was lower for high-risk individuals than control patients (43% vs 86%; hazard ratio, 3.58; 95% CI, 2.01-6.39; P < .001), and high-risk individuals lived longer than matched control patients (median OS, 61.7 [range, 1.9-147.3] vs 8.0 [range, 1.0-131.0] months; 5-year OS rate, 50% [95% CI, 32%-80%] vs 9% [95% CI, 7%-11%]). Conclusions and Relevance: These findings suggest that surveillance of high-risk individuals may lead to detection of smaller, lower-stage PDACs and improved survival.

2.
Pancreas ; 53(6): e528-e536, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38888841

ABSTRACT

OBJECTIVES: Although prevalent in 50%-90% of pancreatic ductal adenocarcinomas, the clinical relevance of "cancerization of ducts" (COD) remains unknown. METHODS: Pathologists retrospectively reviewed slides classifying prevalence of COD. Histopathological parameters, location of first recurrence, recurrence-free survival (RFS), and overall survival (OS) were collected from the institutional pancreatectomy registry. RESULTS: Among 311 pancreatic ductal adenocarcinomas, COD was present in 216 (69.5%) and more prevalent in the cohort that underwent upfront surgery (75.3% vs 63.1%, P = 0.019). Furthermore, COD was associated with female gender (P = 0.040), advanced T stage (P = 0.007), perineural invasion (P = 0.014), lymphovascular invasion (P = 0.025), and R1 margin (P = 0.009), but not N stage (P = 0.401) or tumor differentiation (P = 0.717). In multivariable regression, COD was associated with less liver recurrence (odds ratio, 0.44; P < 0.005). This association was driven by the cohort of patients who had received preoperative treatment (odds ratio, 0.18; P < 0.001). COD was not predictive for RFS or OS. CONCLUSIONS: Cancerization of ducts was not associated with RFS or OS. Currently underrecognized, standardized implementation into histopathological reports may have merit, and further mechanistic scientific experiments need to illuminate its clinical and biologic impact.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatectomy , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/surgery , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/mortality , Male , Female , Pancreatic Neoplasms/surgery , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Retrospective Studies , Aged , Middle Aged , Pancreatectomy/methods , Neoplasm Recurrence, Local , Disease-Free Survival , Pancreatic Ducts/pathology , Pancreatic Ducts/surgery , Clinical Relevance
3.
NAR Cancer ; 6(2): zcae028, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38915758

ABSTRACT

Somatic mutations are desirable targets for selective elimination of cancer, yet most are found within noncoding regions. We have adapted the CRISPR-Cas9 gene editing tool as a novel, cancer-specific killing strategy by targeting the subset of somatic mutations that create protospacer adjacent motifs (PAMs), which have evolutionally allowed bacterial cells to distinguish between self and non-self DNA for Cas9-induced double strand breaks. Whole genome sequencing (WGS) of paired tumor minus normal (T-N) samples from three pancreatic cancer patients (Panc480, Panc504, and Panc1002) showed an average of 417 somatic PAMs per tumor produced from single base substitutions. Further analyses of 591 paired T-N samples from The International Cancer Genome Consortium found medians of ∼455 somatic PAMs per tumor in pancreatic, ∼2800 in lung, and ∼3200 in esophageal cancer cohorts. Finally, we demonstrated 69-99% selective cell death of three targeted pancreatic cancer cell lines using 4-9 sgRNAs designed using the somatic PAM discovery approach. We also showed no off-target activity from these tumor-specific sgRNAs in either the patient's normal cells or an irrelevant cancer using WGS. This study demonstrates the potential of CRISPR-Cas9 as a novel and selective anti-cancer strategy, and supports the genetic targeting of adult cancers.

4.
Am J Surg Pathol ; 48(7): 834-838, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38722694

ABSTRACT

The presence of epithelial cells within lymph node parenchyma is typically indicative of a metastatic malignancy. However, there are rare instances in which non-neoplastic epithelial or epithelioid cells may be found within lymph nodes, either due to aberrant embryologic migration, mechanical displacement, or physiological trafficking. These can potentially lead to serious potential diagnostic pitfalls, as when such situations are encountered by surgical pathologists, there is substantial risk of overdiagnosing these as metastatic malignancy. Herein, we describe 2 cases of benign pancreatic islet cells within peripancreatic lymph nodes, and underscore the potential for misdiagnosis of this phenomenon as foci of metastatic well-differentiated neuroendocrine tumor. The benign nature of these intranodal islet cells was supported by: (1) the absence of a well-differentiated neuroendocrine tumor in the entirely submitted concomitant pancreatic resection specimen and (2) the presence of an admixture of insulin and glucagon expressing cells by immunohistochemistry in a distribution characteristic of non-neoplastic pancreatic islets. Both cases were incidental microscopic findings in pancreatic resections for intraductal papillary mucinous neoplasms that were previously biopsied and showed associated microscopic areas of fibrosis and chronic pancreatitis and thus this phenomenon may be related to mechanical displacement from prior injury and/or biopsy.


Subject(s)
Islets of Langerhans , Lymph Nodes , Pancreatic Neoplasms , Humans , Lymph Nodes/pathology , Islets of Langerhans/pathology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/surgery , Pancreatic Neoplasms/chemistry , Male , Middle Aged , Female , Aged , Lymphatic Metastasis , Immunohistochemistry , Diagnosis, Differential , Incidental Findings , Diagnostic Errors , Biomarkers, Tumor/analysis , Predictive Value of Tests , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/surgery
5.
Nature ; 629(8012): 679-687, 2024 May.
Article in English | MEDLINE | ID: mdl-38693266

ABSTRACT

Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.


Subject(s)
Genetic Heterogeneity , Genomics , Imaging, Three-Dimensional , Pancreatic Neoplasms , Precancerous Conditions , Single-Cell Analysis , Adult , Female , Humans , Male , Clone Cells/metabolism , Clone Cells/pathology , Exome Sequencing , Machine Learning , Mutation , Pancreas/anatomy & histology , Pancreas/cytology , Pancreas/metabolism , Pancreas/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Workflow , Disease Progression , Early Detection of Cancer , Oncogenes/genetics
6.
Am J Surg Pathol ; 48(7): 839-845, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38764379

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) develops from 2 known precursor lesions: a majority (∼85%) develops from pancreatic intraepithelial neoplasia (PanIN), and a minority develops from intraductal papillary mucinous neoplasms (IPMNs). Clinical classification of PanIN and IPMN relies on a combination of low-resolution, 3-dimensional (D) imaging (computed tomography, CT), and high-resolution, 2D imaging (histology). The definitions of PanIN and IPMN currently rely heavily on size. IPMNs are defined as macroscopic: generally >1.0 cm and visible in CT, and PanINs are defined as microscopic: generally <0.5 cm and not identifiable in CT. As 2D evaluation fails to take into account 3D structures, we hypothesized that this classification would fail in evaluation of high-resolution, 3D images. To characterize the size and prevalence of PanINs in 3D, 47 thick slabs of pancreas were harvested from grossly normal areas of pancreatic resections, excluding samples from individuals with a diagnosis of an IPMN. All patients but one underwent preoperative CT scans. Through construction of cellular resolution 3D maps, we identified >1400 ductal precursor lesions that met the 2D histologic size criteria of PanINs. We show that, when 3D space is considered, 25 of these lesions can be digitally sectioned to meet the 2D histologic size criterion of IPMN. Re-evaluation of the preoperative CT images of individuals found to possess these large precursor lesions showed that nearly half are visible on imaging. These findings demonstrate that the clinical classification of PanIN and IPMN fails in evaluation of high-resolution, 3D images, emphasizing the need for re-evaluation of classification guidelines that place significant weight on 2D assessment of 3D structures.


Subject(s)
Carcinoma, Pancreatic Ductal , Imaging, Three-Dimensional , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/diagnostic imaging , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/classification , Pancreatic Intraductal Neoplasms/pathology , Pancreatic Intraductal Neoplasms/diagnostic imaging , Female , Carcinoma in Situ/pathology , Carcinoma in Situ/diagnostic imaging , Male , Middle Aged , Aged , Tomography, X-Ray Computed , Tumor Burden , Predictive Value of Tests
7.
Abdom Radiol (NY) ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761272

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related mortality and it is often diagnosed at advanced stages due to non-specific clinical presentation. Disease detection at localized disease stage followed by surgical resection remains the only potentially curative treatment. In this era of precision medicine, a multifaceted approach to early detection of PDAC includes targeted screening in high-risk populations, serum biomarkers and "liquid biopsies", and artificial intelligence augmented tumor detection from radiologic examinations. In this review, we will review these emerging techniques in the early detection of PDAC.

8.
JCO Precis Oncol ; 8: e2400101, 2024 May.
Article in English | MEDLINE | ID: mdl-38781545

ABSTRACT

PURPOSE: Inherited cancer susceptibility is often not suspected in the absence of a significant cancer family history. Pathogenic germline variants in pancreatic cancer are well-studied, and routine genetic testing is recommended in the guidelines. However, data on rare periampullary cancers other than pancreatic cancer are insufficient. We compared the prevalence of germline susceptibility variants in patients with pancreatic cancer and nonpancreatic periampullary cancers. MATERIALS AND METHODS: Six hundred and eight patients who had undergone pancreaticoduodenal resection at a tertiary referral hospital were studied, including 213 with pancreatic ductal adenocarcinoma, 172 with ampullary cancer, 154 with distal common bile duct cancer, and 69 with duodenal adenocarcinoma. Twenty cancer susceptibility and candidate susceptibility genes were sequenced, and variant interpretation was assessed by interrogating ClinVar and PubMed. RESULTS: Pathogenic or likely pathogenic, moderate- to high-penetrant germline variants were identified in 46 patients (7.7%), including a similar percentage of patients with pancreatic (8.5%) and nonpancreatic periampullary cancer (7.1%). Low-penetrant variants were identified in an additional 11 patients (1.8%). Eighty-nine percent of the moderate- to high-penetrant variants involved the major cancer susceptibility genes BRCA2, ATM, BRCA1, CDKN2A, MSH2/MLH1, and PALB2; the remaining 11% involved other cancer susceptibility genes such as BRIP1, BAP1, and MSH6. Almost all pathogenic variant carriers had a family history of cancer. CONCLUSION: Patients with pancreatic and nonpancreatic periampullary cancer have a similar prevalence of pathogenic cancer susceptibility variants. Germline susceptibility testing should be considered for patients with any periampullary cancer.


Subject(s)
Ampulla of Vater , Genetic Predisposition to Disease , Germ-Line Mutation , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Male , Female , Middle Aged , Aged , Ampulla of Vater/pathology , Adult , Common Bile Duct Neoplasms/genetics , Aged, 80 and over , Duodenal Neoplasms/genetics , Duodenal Neoplasms/pathology
9.
Abdom Radiol (NY) ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782784

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has poor prognosis mostly due to the advanced stage at which disease is diagnosed. Early detection of disease at a resectable stage is, therefore, critical for improving outcomes of patients. Prior studies have demonstrated that pancreatic abnormalities may be detected on CT in up to 38% of CT studies 5 years before clinical diagnosis of PDAC. In this review, we highlight commonly missed signs of early PDAC on CT. Broadly, these commonly missed signs consist of small isoattenuating PDAC without contour deformity, isolated pancreatic duct dilatation and cutoff, focal pancreatic enhancement and focal parenchymal atrophy, pancreatitis with underlying PDAC, and vascular encasement. Through providing commentary on demonstrative examples of these signs, we demonstrate how to reduce the risk of missing or misinterpreting radiological features of early PDAC.

10.
Am J Surg Pathol ; 48(6): 726-732, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38482693

ABSTRACT

The radiologic finding of focal stenosis of the main pancreatic duct is highly suggestive of pancreatic cancer. Even in the absence of a mass lesion, focal duct stenosis can lead to surgical resection of the affected portion of the pancreas. We present four patients with distinctive pathology associated with non-neoplastic focal stenosis of the main pancreatic duct. The pathology included stenosis of the pancreatic duct accompanied by wavy, acellular, serpentine-like fibrosis, chronic inflammation with foreign body-type giant cell reaction, and calcifications. In all cases, the pancreas toward the tail of the gland had obstructive changes including acinar drop-out and interlobular and intralobular fibrosis. Three of the four patients had a remote history of major motor vehicle accidents associated with severe abdominal trauma. These results emphasize that blunt trauma can injure the pancreas and that this injury can result in long-term complications, including focal stenosis of the main pancreatic duct. Pathologists should be aware of the distinct pathology associated with remote trauma and, when the pathology is present, should elicit the appropriate clinical history.


Subject(s)
Accidents, Traffic , Pancreatic Ducts , Pancreatitis , Seat Belts , Adult , Aged , Female , Humans , Male , Middle Aged , Abdominal Injuries/pathology , Abdominal Injuries/complications , Abdominal Injuries/etiology , Constriction, Pathologic/etiology , Fibrosis , Pancreatic Ducts/pathology , Pancreatic Ducts/injuries , Pancreatitis/etiology , Pancreatitis/pathology , Seat Belts/adverse effects , Wounds, Nonpenetrating/complications , Wounds, Nonpenetrating/pathology , Wounds, Nonpenetrating/etiology
11.
bioRxiv ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38352348

ABSTRACT

Introduction: Metastatic cancer affects millions of people worldwide annually and is the leading cause of cancer-related deaths. Most patients with metastatic disease are not eligible for surgical resection, and current therapeutic regimens have varying success rates, some with 5-year survival rates below 5%. Here we test the hypothesis that metastatic cancer can be genetically targeted by exploiting single base substitution mutations unique to individual cells that occur as part of normal aging prior to transformation. These mutations are targetable because ~10% of them form novel tumor-specific "NGG" protospacer adjacent motif (PAM) sites targetable by CRISPR-Cas9. Methods: Whole genome sequencing was performed on five rapid autopsy cases of patient-matched primary tumor, normal and metastatic tissue from pancreatic ductal adenocarcinoma decedents. CRISPR-Cas9 PAM targets were determined by bioinformatic tumor-normal subtraction for each patient and verified in metastatic samples by high-depth capture-based sequencing. Results: We found that 90% of PAM targets were maintained between primary carcinomas and metastases overall. We identified rules that predict PAM loss or retention, where PAMs located in heterozygous regions in the primary tumor can be lost in metastases (private LOH), but PAMs occurring in regions of loss of heterozygosity (LOH) in the primary tumor were universally conserved in metastases. Conclusions: Regions of truncal LOH are strongly retained in the presence of genetic instability, and therefore represent genetic vulnerabilities in pancreatic adenocarcinomas. A CRISPR-based gene therapy approach targeting these regions may be a novel way to genetically target metastatic cancer.

12.
Fam Cancer ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319536

ABSTRACT

Infiltrating ductal adenocarcinoma of the pancreas, referred to here as "pancreatic cancer," is one of the deadliest of all of the solid malignancies. The five-year survival rate in the United States for individuals diagnosed today with pancreatic cancer is a dismal 12%. Many invasive cancers, including pancreatic cancer, however, arise from histologically and genetically well-characterized precursor lesions, and these precancers are curable. Precursor lesions therefore are an attractive target for early detection and treatment. This is particularly true for individuals with an increased risk of developing invasive cancer, such as individuals with a strong family history of pancreatic cancer, and individuals with a germline variant known to increase the risk of developing pancreatic cancer. There is therefore a need to understand the precursor lesions that can give rise to invasive pancreatic cancer in these individuals.

13.
Sci Transl Med ; 16(731): eadi3883, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38266106

ABSTRACT

We previously described an approach called RealSeqS to evaluate aneuploidy in plasma cell-free DNA through the amplification of ~350,000 repeated elements with a single primer. We hypothesized that an unbiased evaluation of the large amount of sequencing data obtained with RealSeqS might reveal other differences between plasma samples from patients with and without cancer. This hypothesis was tested through the development of a machine learning approach called Alu Profile Learning Using Sequencing (A-PLUS) and its application to 7615 samples from 5178 individuals, 2073 with solid cancer and the remainder without cancer. Samples from patients with cancer and controls were prespecified into four cohorts used for model training, analyte integration, and threshold determination, validation, and reproducibility. A-PLUS alone provided a sensitivity of 40.5% across 11 different cancer types in the validation cohort, at a specificity of 98.5%. Combining A-PLUS with aneuploidy and eight common protein biomarkers detected 51% of the cancers at 98.9% specificity. We found that part of the power of A-PLUS could be ascribed to a single feature-the global reduction of AluS subfamily elements in the circulating DNA of patients with solid cancer. We confirmed this reduction through the analysis of another independent dataset obtained with a different approach (whole-genome sequencing). The evaluation of Alu elements may therefore have the potential to enhance the performance of several methods designed for the earlier detection of cancer.


Subject(s)
Neoplasms , Humans , Reproducibility of Results , Neoplasms/diagnosis , Neoplasms/genetics , Short Interspersed Nucleotide Elements , Machine Learning , Aneuploidy
14.
Gut ; 73(6): 941-954, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38262672

ABSTRACT

OBJECTIVE: The optimal therapeutic response in cancer patients is highly dependent upon the differentiation state of their tumours. Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer that harbours distinct phenotypic subtypes with preferential sensitivities to standard therapies. This study aimed to investigate intratumour heterogeneity and plasticity of cancer cell states in PDA in order to reveal cell state-specific regulators. DESIGN: We analysed single-cell expression profiling of mouse PDAs, revealing intratumour heterogeneity and cell plasticity and identified pathways activated in the different cell states. We performed comparative analysis of murine and human expression states and confirmed their phenotypic diversity in specimens by immunolabeling. We assessed the function of phenotypic regulators using mouse models of PDA, organoids, cell lines and orthotopically grafted tumour models. RESULTS: Our expression analysis and immunolabeling analysis show that a mucus production programme regulated by the transcription factor SPDEF is highly active in precancerous lesions and the classical subtype of PDA - the most common differentiation state. SPDEF maintains the classical differentiation and supports PDA transformation in vivo. The SPDEF tumour-promoting function is mediated by its target genes AGR2 and ERN2/IRE1ß that regulate mucus production, and inactivation of the SPDEF programme impairs tumour growth and facilitates subtype interconversion from classical towards basal-like differentiation. CONCLUSIONS: Our findings expand our understanding of the transcriptional programmes active in precancerous lesions and PDAs of classical differentiation, determine the regulators of mucus production as specific vulnerabilities in these cell states and reveal phenotype switching as a response mechanism to inactivation of differentiation states determinants.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Mice , Humans , Mucus/metabolism , Mucoproteins/metabolism , Mucoproteins/genetics , Cell Line, Tumor , Cell Differentiation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Proteins/metabolism , Proteins/genetics , Organoids/pathology , Organoids/metabolism , Cell Plasticity , Gene Expression Regulation, Neoplastic , Disease Models, Animal , Oncogene Proteins
15.
Pancreas ; 53(2): e180-e186, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38194643

ABSTRACT

OBJECTIVE: The aim of the study is to assess the relationship between magnetic resonance imaging (MRI)-based estimation of pancreatic fat and histology-based measurement of pancreatic composition. MATERIALS AND METHODS: In this retrospective study, MRI was used to noninvasively estimate pancreatic fat content in preoperative images from high-risk individuals and disease controls having normal pancreata. A deep learning algorithm was used to label 11 tissue components at micron resolution in subsequent pancreatectomy histology. A linear model was used to determine correlation between histologic tissue composition and MRI fat estimation. RESULTS: Twenty-seven patients (mean age 64.0 ± 12.0 years [standard deviation], 15 women) were evaluated. The fat content measured by MRI ranged from 0% to 36.9%. Intrapancreatic histologic tissue fat content ranged from 0.8% to 38.3%. MRI pancreatic fat estimation positively correlated with microanatomical composition of fat (r = 0.90, 0.83 to 0.95], P < 0.001); as well as with pancreatic cancer precursor ( r = 0.65, P < 0.001); and collagen ( r = 0.46, P < 0.001) content, and negatively correlated with pancreatic acinar ( r = -0.85, P < 0.001) content. CONCLUSIONS: Pancreatic fat content, measurable by MRI, correlates to acinar content, stromal content (fibrosis), and presence of neoplastic precursors of cancer.


Subject(s)
Adipose Tissue , Magnetic Resonance Imaging , Pancreas, Exocrine , Aged , Female , Humans , Middle Aged , Adipose Tissue/diagnostic imaging , Magnetic Resonance Imaging/methods , Pancreas/diagnostic imaging , Pancreas/pathology , Pancreas, Exocrine/diagnostic imaging , Pancreatic Neoplasms/pathology , Retrospective Studies
16.
Diagn Interv Imaging ; 105(1): 33-39, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37598013

ABSTRACT

PURPOSE: The purpose of this study was to develop a radiomics-signature using computed tomography (CT) data for the preoperative prediction of grade of nonfunctional pancreatic neuroendocrine tumors (NF-PNETs). MATERIALS AND METHODS: A retrospective study was performed on patients undergoing resection for NF-PNETs between 2010 and 2019. A total of 2436 radiomic features were extracted from arterial and venous phases of pancreas-protocol CT examinations. Radiomic features that were associated with final pathologic grade observed in the surgical specimens were subjected to joint mutual information maximization for hierarchical feature selection and the development of the radiomic-signature. Youden-index was used to identify optimal cutoff for determining tumor grade. A random forest prediction model was trained and validated internally. The performance of this tool in predicting tumor grade was compared to that of EUS-FNA sampling that was used as the standard of reference. RESULTS: A total of 270 patients were included and a fusion radiomic-signature based on 10 selected features was developed using the development cohort (n = 201). There were 149 men and 121 women with a mean age of 59.4 ± 12.3 (standard deviation) years (range: 23.3-85.0 years). Upon internal validation in a new set of 69 patients, a strong discrimination was observed with an area under the curve (AUC) of 0.80 (95% confidence interval [CI]: 0.71-0.90) with corresponding sensitivity and specificity of 87.5% (95% CI: 79.7-95.3) and 73.3% (95% CI: 62.9-83.8) respectively. Of the study population, 143 patients (52.9%) underwent EUS-FNA. Biopsies were non-diagnostic in 26 patients (18.2%) and could not be graded due to insufficient sample in 42 patients (29.4%). In the cohort of 75 patients (52.4%) in whom biopsies were graded the radiomic-signature demonstrated not different AUC as compared to EUS-FNA (AUC: 0.69 vs. 0.67; P = 0.723), however greater sensitivity (i.e., ability to accurately identify G2/3 lesion was observed (80.8% vs. 42.3%; P < 0.001). CONCLUSION: Non-invasive assessment of tumor grade in patients with PNETs using the proposed radiomic-signature demonstrated high accuracy. Prospective validation and optimization could overcome the commonly experienced diagnostic uncertainty in the assessment of tumor grade in patients with PNETs and could facilitate clinical decision-making.


Subject(s)
Neuroectodermal Tumors, Primitive , Neuroendocrine Tumors , Pancreatic Neoplasms , Male , Humans , Female , Middle Aged , Aged , Retrospective Studies , Neuroendocrine Tumors/diagnostic imaging , Neoplasm Grading , Radiomics , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Tomography, X-Ray Computed
17.
Mol Cell Proteomics ; 23(1): 100687, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029961

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types, partly because it is frequently identified at an advanced stage, when surgery is no longer feasible. Therefore, early detection using minimally invasive methods such as blood tests may improve outcomes. However, studies to discover molecular signatures for the early detection of PDAC using blood tests have only been marginally successful. In the current study, a quantitative glycoproteomic approach via data-independent acquisition mass spectrometry was utilized to detect glycoproteins in 29 patient-matched PDAC tissues and sera. A total of 892 N-linked glycopeptides originating from 141 glycoproteins had PDAC-associated changes beyond normal variation. We further evaluated the specificity of these serum-detectable glycoproteins by comparing their abundance in 53 independent PDAC patient sera and 65 cancer-free controls. The PDAC tissue-associated glycoproteins we have identified represent an inventory of serum-detectable PDAC-associated glycoproteins as candidate biomarkers that can be potentially used for the detection of PDAC using blood tests.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Biomarkers, Tumor/metabolism , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Glycoproteins , Mass Spectrometry
18.
Abdom Radiol (NY) ; 49(2): 501-511, 2024 02.
Article in English | MEDLINE | ID: mdl-38102442

ABSTRACT

PURPOSE: Delay in diagnosis can contribute to poor outcomes in pancreatic ductal adenocarcinoma (PDAC), and new tools for early detection are required. Recent application of artificial intelligence to cancer imaging has demonstrated great potential in detecting subtle early lesions. The aim of the study was to evaluate global and local accuracies of deep neural network (DNN) segmentation of normal and abnormal pancreas with pancreatic mass. METHODS: Our previously developed and reported residual deep supervision network for segmentation of PDAC was applied to segment pancreas using CT images of potential renal donors (normal pancreas) and patients with suspected PDAC (abnormal pancreas). Accuracy of DNN pancreas segmentation was assessed using DICE simulation coefficient (DSC), average symmetric surface distance (ASSD), and Hausdorff distance 95% percentile (HD95) as compared to manual segmentation. Furthermore, two radiologists semi-quantitatively assessed local accuracies and estimated volume of correctly segmented pancreas. RESULTS: Forty-two normal and 49 abnormal CTs were assessed. Average DSC was 87.4 ± 3.1% and 85.5 ± 3.2%, ASSD 0.97 ± 0.30 and 1.34 ± 0.65, HD95 4.28 ± 2.36 and 6.31 ± 6.31 for normal and abnormal pancreas, respectively. Semi-quantitatively, ≥95% of pancreas volume was correctly segmented in 95.2% and 53.1% of normal and abnormal pancreas by both radiologists, and 97.6% and 75.5% by at least one radiologist. Most common segmentation errors were made on pancreatic and duodenal borders in both groups, and related to pancreatic tumor including duct dilatation, atrophy, tumor infiltration and collateral vessels. CONCLUSION: Pancreas DNN segmentation is accurate in a majority of cases, however, minor manual editing may be necessary; particularly in abnormal pancreas.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Artificial Intelligence , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Neural Networks, Computer , Pancreas/diagnostic imaging , Pancreatic Neoplasms/diagnostic imaging
19.
bioRxiv ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38106231

ABSTRACT

Methods for spatially resolved cellular profiling using thinly cut sections have enabled in-depth quantitative tissue mapping to study inter-sample and intra-sample differences in normal human anatomy and disease onset and progression. These methods often profile extremely limited regions, which may impact the evaluation of heterogeneity due to tissue sub-sampling. Here, we applied CODA, a deep learning-based tissue mapping platform, to reconstruct the three-dimensional (3D) microanatomy of grossly normal and cancer-containing human pancreas biospecimens obtained from individuals who underwent pancreatic resection. To compare inter- and intra-sample heterogeneity, we assessed bulk and spatially resolved tissue composition in a cohort of two-dimensional (2D) whole slide images (WSIs) and a cohort of thick slabs of pancreas tissue that were digitally reconstructed in 3D from serial sections. To demonstrate the marked under sampling of 2D assessments, we simulated the number of WSIs and tissue microarrays (TMAs) necessary to represent the compositional heterogeneity of 3D data within 10% error to reveal that tens of WSIs and hundreds of TMA cores are sometimes needed. We show that spatial correlation of different pancreatic structures decay significantly within a span of microns, demonstrating that 2D histological sections may not be representative of their neighboring tissues. In sum, we demonstrate that 3D assessments are necessary to accurately assess tissue composition in normal and abnormal specimens and in order to accurately determine neoplastic content. These results emphasize the importance of intra-sample heterogeneity in tissue mapping efforts.

20.
bioRxiv ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38105957

ABSTRACT

Pancreatic ductal adenocarcinoma is a rare but lethal cancer. Recent evidence reveals that pancreatic intraepithelial neoplasms (PanINs), the microscopic precursor lesions in the pancreatic ducts that can give rise to invasive pancreatic cancer, are significantly larger and more prevalent than previously believed. Better understanding of the growth law dynamics of PanINs may improve our ability to understand how a miniscule fraction of these lesions makes the transition to invasive cancer. Here, using artificial intelligence (AI)-based three-dimensional (3D) tissue mapping method, we measured the volumes of >1,000 PanIN and found that lesion size is distributed according to a power law with a fitted exponent of -1.7 over > 3 orders of magnitude. Our data also suggest that PanIN growth is not very sensitive to the pancreatic microenvironment or an individual's age, family history, and lifestyle, and is rather shaped by general growth behavior. We analyze several models of PanIN growth and fit the predicted size distributions to the observed data. The best fitting models suggest that both intraductal spread of PanIN lesions and fusing of multiple lesions into large, highly branched structures drive PanIN growth patterns. This work lays the groundwork for future mathematical modeling efforts integrating PanIN incidence, morphology, genomic, and transcriptomic features to understand pancreas tumorigenesis, and demonstrates the utility of combining experimental measurement of human tissues with dynamic modeling for understanding cancer tumorigenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...