Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rec ; 24(6): e202300335, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847061

ABSTRACT

In the last past twenty years, research on luminescent platinum (II) complexes has been intensively developed for useful application such as organic light emitting diodes (OLEDs). More recently, new photoluminescent complexes based on diazine ligands (pyrimidine, pyrazine, pyridazine, quinazoline and quinoxaline) have been developed in this context. This review will summarize the photophysical properties of most of the phosphorescent diazine Pt(II) complexes described in the literature and compare the results to pyridine analogues whenever possible. Based on the emission color, and the photoluminescence quantum yield (PLQY) values, the relationship between structure modification, and photophysical properties are highlighted. Tuning of emission color, quantum yields in solution and solid state and, for some complexes, aggregation induced emission (AIE) or thermally activated delayed fluorescence (TADF) properties are described. When emitting OLEDs have been built from diazine Pt(II) complexes, the external quantum efficiency (EQE) values and luminance for different emission wavelengths and in some cases, chromaticity coordinates obtained from devices, are given. Finally, this review highlights the growing interest in studies of new luminescent diazine Pt(II) complexes for OLED applications.

2.
Dalton Trans ; 52(7): 1927-1938, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36722926

ABSTRACT

A series of phosphorescent platinum(II) complexes containing various phenyldiazine-type bidentate N^C ligands have been successfully synthesized and characterized. Structural modifications have been made to bidentate cyclometalating ligands regarding the nature of the diazine ring (pyrimidine, pyrazine and quinazoline), the substituent groups at the C4 position of the pyrimidine ring (OCH3, CF3) and the EDGs at the para position of the Pt atom (OCH3, Ph, NPh2, carbazol). In addition, the electronic properties of the azaheterocyclic ancillary ligand have been modulated in this series of complexes (pyridine, 4-methoxy-pyridine or pyrimidine). X-ray diffraction studies have been performed on three complexes, revealing Pt(II) ions in a distorted square-planar geometrical environment with no Pt(II)⋯Pt(II) interactions but with moderate π-π interactions in the solid-state structure. Electrochemical and computational studies suggest a ligand-centered reduction on the diazine ligands with, in some cases, additional contribution from the azaheterocyclic ancillary ligand, whereas oxidation occurs on the Pt-phenyl ring substituent moieties. All complexes exhibit phosphorescence emission ranging from green to red/near-infrared, both in solution and in the solid state. Complexes bearing a 2-(3-methoxyphenyl)pyrimidine ligand show the best PLQY of the series, up to 52% in a CH2Cl2 solution and 20% in the solid state. Furthermore, the solid state PLQY of one of the near-infrared emitting phenylquinazoline complex has been found to be 6%.

3.
Dalton Trans ; 51(14): 5546-5560, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35302571

ABSTRACT

In this article, we report on a series of cyclometalated chloro- and alkynyl-platinum(II) complexes bearing various tridentate N^C^N-cyclometalated ligands derived from 1,3-bis(pyrimidin-2-yl)benzene. The X-ray crystal structures of two alkynyl-platinum(II) complexes were determined and other structures were DFT-calculated. Electrochemical and DFT-computational studies suggest a ligand-centred reduction on the R1-substituted N^C^N ligand, whereas oxidation likely occurs either on the Pt-phenylacetylide moiety and/or the cyclometalated ligand. In CH2Cl2 solution at room temperature, the complexes show phosphorescent emissions ranging from green to orange, depending on the R1 and R2 substituents on the ligands. In KBr solid state matrix, excluding complexes bearing a trifluoromethyl substituted ligand, all compounds exhibit red emission. The presence of an alkynyl ancillary ligand has limited influence on absorption and emission spectra except in the case of the complex with the strongly electron-donating diphenylamino R2 substituent on the alkynyl ligand, for which a significant red-shift was observed. The alkynyl Pt(II) complex with OMe groups as both R1 and R2 substituents shows the best emission quantum yield (0.81 in CH2Cl2 solution) in this series. The full series of DFT calculated band gaps correlated generally well with the electrochemical and absorption data and reasonably model the impact of the substituents on the electronics of these complexes.

4.
Chemistry ; 26(68): 15881-15891, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-32729951

ABSTRACT

Bay decoration of perylenediimide (PDI) is an attractive approach for tuning the optoelectronic properties of the dye as well as breaking backbone planarity, which provides the possibility of preventing the undesired formation of aggregates. This is usually performed through successive bis-bromination of PDI and pallado-catalyzed cross-coupling, which leads to symmetric triads. We now describe an efficient synthetic strategy for desymmetrization of the accepting PDI core by starting from its bis-nitration. To this end, Suzuki-Miyaura Couplings (SMC) were carried out on a mixture of 1,6- and 1,7-dinitroPDI regioisomers to add triphenylamine donating moieties and obtain donor-acceptor-donor triads. Investigation of the reactivity of dinitro PDI derivatives toward SMC has allowed us to access unprecedented asymmetric π-conjugated PDI-centered triads. These 1,6- and 1,7-PDI based triads, prepared as regioisomeric mixtures, were successfully separated and their spectroscopic, crystallographic and optoelectronic differences are reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...