Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Med Chem ; 238: 114377, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35526478

ABSTRACT

The fluorinated bis-pyridinium oximes were designed and synthesized with the aim of increasing their nucleophilicity and potential to reactivate phosphorylated human recombinant acetylcholinesterase (AChE) and human purified plasmatic butyrylcholinesterase (BChE) in relation to chlorinated and non-halogenated oxime analogues. Compared to non-halogenated oximes, halogenated oximes showed lower pKa of the oxime group (fluorinated < chlorinated < non-halogenated) along with higher level of oximate anion formation at the physiological pH, and had a higher binding affinity of both AChE and BChE. The stability tests showed that the fluorinated oximes were stable in water, while in buffered environment di-fluorinated oximes were prone to rapid degradation, which was reflected in their lower reactivation ability. Mono-fluorinated oximes showed comparable reactivation to non-halogenated (except asoxime) and mono-chlorinated oximes in case of AChE inhibited by sarin, cyclosarin, VX, and tabun, but were less efficient than di-chlorinated ones. The same trend was observed in the reactivation of inhibited BChE. The advantage of halogen substituents in the stabilization of oxime in a position optimal for in-line nucleophilic attack were confirmed by extensive molecular modelling of pre-reactivation complexes between the analogue oximes and phosphorylated AChE and BChE. Halogen substitution was shown to provide oximes with additional beneficial properties, e.g., fluorinated oximes gained antioxidative capacity, and moreover, halogens themselves did not increase cytotoxicity of oximes. Finally, the in vivo administration of highly efficient reactivator and the most promising analogue, 3,5-di-chloro-bispyridinium oxime with trimethylene linker, provided significant protection of mice exposed to sarin and cyclosarin.


Subject(s)
Cholinesterase Reactivators , Nerve Agents , Acetylcholinesterase/metabolism , Animals , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Reactivators/chemistry , Halogens , Mice , Nerve Agents/pharmacology , Organophosphorus Compounds , Oximes/chemistry , Sarin/chemistry
2.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105595

ABSTRACT

A library of amine, oxime, ether, epoxy and acyl derivatives of the benzobicyclo[3.2.1]octene were synthesized and evaluated as inhibitors of both human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The majority of the tested compounds exhibited higher selectivity for BChE. Structural adjustment for AChE seems to have been achieved by acylation, and the furan ring opening of furo-benzobicyclo[3.2.1]octadiene results for compound 51 with the highest AChE affinity (IC50 = 8.3 µM). Interestingly, its analogue, an oxime ether with a benzobicyclo[3.2.1]-skeleton, compound 32 was one of the most potent BChE inhibitors in this study (IC50 = 31 µM), but not as potent as endo-43, an ether derivative of the benzobicyclo[3.2.1]octene with an additional phenyl substituent (IC50 = 17 µM). Therefore, we identified several cholinesterase inhibitors with a potential for further development as potential drugs for the treatment of neurodegenerative diseases.


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cyclooctanes/chemistry , Small Molecule Libraries/chemical synthesis , Acylation , Benzylamines/chemistry , Cholinesterase Inhibitors/metabolism , Density Functional Theory , Epoxy Compounds/chemistry , Ether/chemistry , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Oximes/chemistry , Structure-Activity Relationship
3.
Arh Hig Rada Toksikol ; 71(4): 266-284, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33410774

ABSTRACT

Phosphylation of the pivotal enzyme acetylcholinesterase (AChE) by nerve agents (NAs) leads to irreversible inhibition of the enzyme and accumulation of neurotransmitter acetylcholine, which induces cholinergic crisis, that is, overstimulation of muscarinic and nicotinic membrane receptors in the central and peripheral nervous system. In severe cases, subsequent desensitisation of the receptors results in hypoxia, vasodepression, and respiratory arrest, followed by death. Prompt action is therefore critical to improve the chances of victim's survival and recovery. Standard therapy of NA poisoning generally involves administration of anticholinergic atropine and an oxime reactivator of phosphylated AChE. Anticholinesterase compounds or NA bioscavengers can also be applied to preserve native AChE from inhibition. With this review of 70 years of research we aim to present current and potential approaches to counteracting NA poisoning.


Subject(s)
Chemical Warfare Agents , Chemical Warfare , Cholinesterase Reactivators , Nerve Agents , Organophosphate Poisoning , Acetylcholinesterase , Chemical Warfare Agents/poisoning , Cholinesterase Inhibitors , Humans , Organophosphate Poisoning/drug therapy , Oximes
4.
Chemistry ; 25(16): 4100-4114, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30458057

ABSTRACT

Acetylcholinesterase (AChE), an enzyme that degrades the neurotransmitter acetylcholine, when covalently inhibited by organophosphorus compounds (OPs), such as nerve agents and pesticides, can be reactivated by oximes. However, tabun remains among the most dangerous nerve agents due to the low reactivation efficacy of standard pyridinium aldoxime antidotes. Therefore, finding an optimal reactivator for prophylaxis against tabun toxicity and for post-exposure treatment is a continued challenge. In this study, we analyzed the reactivation potency of 111 novel nucleophilic oximes mostly synthesized using the CuAAC triazole ligation between alkyne and azide building blocks. We identified several oximes with significantly improved in vitro reactivating potential for tabun-inhibited human AChE, and in vivo antidotal efficacies in tabun-exposed mice. Our findings offer a significantly improved platform for further development of antidotes and scavengers directed against tabun and related phosphoramidate exposures, such as the Novichok compounds.


Subject(s)
Acetylcholinesterase/drug effects , Organophosphates/toxicity , Oximes/pharmacokinetics , Triazoles/chemistry , Alkynes/chemistry , Animals , Antibiotic Prophylaxis/methods , Antidotes/metabolism , Azides/chemistry , Catalysis , Copper/chemistry , Female , Kinetics , Mice , Molecular Structure , Organophosphates/chemical synthesis , Organophosphorus Compounds/metabolism , Oximes/administration & dosage , Oximes/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL