Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 25(4): 2101-6, 2009 Feb 17.
Article in English | MEDLINE | ID: mdl-19170526

ABSTRACT

Atomic force microscopy (AFM) was used to measure the disjoining pressures of perfluoropolyether lubricant films (0.8-4.3 nm of Fomblin Z03) on both silicon wafers and hard drive disks coated with a diamondlike carbon overcoat. Differences in the disjoining pressure between the two systems were expected to be due to variations in the strength of van der Waals interactions. Lifshitz theory calculations suggest that this substrate switch will lead to relatively small changes in disjoining pressure as compared to the more pronounced effects reported due to changes in lubricant chemistry. We demonstrate the sensitivity of our AFM method by distinguishing between these similar systems.

2.
Langmuir ; 22(26): 11436-46, 2006 Dec 19.
Article in English | MEDLINE | ID: mdl-17154637

ABSTRACT

We have identified conditions in which the atomic force microscope can be used to stretch a meniscus of a perfluoropolyether (PFPE) lubricant pinned between an AFM tip and a nanometer-thick PFPE film to obtain the disjoining pressure of the film. Under quasi-equilibrium conditions, the chemical potential of the film can be equated to that of the stretched meniscus. A theory is presented that provides a complete description of the capillary force of a stretched meniscus. Fits of the theory to quasi-equilibrium force-extension curves yield the effective meniscus curvature and, by extension, the disjoining pressure of the underlying film. AFM force curves collected at varying film thicknesses compare very well with predictions from Lifshitz theory of dispersive interactions in thin films, with no adjustable parameters. This complete description of meniscus deformation during atomic force microscopy force-extension experiments makes possible the measurement of unknown disjoining pressures as required for screening of lubricant-overcoat combinations required for next-generation data storage systems.

3.
Langmuir ; 20(23): 10073-9, 2004 Nov 09.
Article in English | MEDLINE | ID: mdl-15518496

ABSTRACT

The disjoining pressure of lubricant nanofilms used in the magnetic recording industry controls the equilibrium wetting, the dynamics of film restoration, and the evaporation kinetics of the film. It has been claimed that by measuring the contact angle of nonpolar and polar liquids on lubricant films, the disjoining pressure can be extracted using the method of Girafalco and Good, and such analyses have appeared in the literature. The approximations underlying the method have been discussed before in the literature. In view of the importance of measuring disjoining pressure in nanofilms of lubricants, it is timely to revisit these assumptions to understand the validity of the contact-angle method presently in use. We re-derive the relevant equations using a thermodynamic-interaction-energy approach which is free of the problems inherent in the original derivation and make explicit the assumptions which must be made in the derivation. General interaction energy arguments are then invoked to demonstrate that it does not appear possible to obtain the disjoining pressure in the film from contact-angle measurements in an unambiguous manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...