Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37687726

ABSTRACT

The effect of carbonyl iron powder, FeSiCr alloy powder, and annealed FeSiAl alloy powder, both individually and in binary combinations, on the density, microstructure, and magnetic properties (including permeability and power loss) of inductors manufactured by molding compaction was investigated in this study. The investigation demonstrates that hysteresis loss dominates power loss in the tested frequency range. Due to higher compacted density and reduced coercivity, adding 50% carbonyl iron powder to annealed powder resulted in the lowest hysteresis loss, allowing for domain wall movement. On the other hand, adding 50% FeSiCr alloy powder to annealed powder resulted in higher hysteresis loss due to impurity components hindering domain wall motion. Due to extreme plastic deformation, the carbonyl iron powder and FeSiCr alloy powder combinations displayed the most significant hysteresis loss. Eddy current loss followed the same trends as hysteresis loss in the mixtures. This study provides important insights for refining the soft magnetic composite design to obtain higher magnetic performance, while minimizing power loss.

2.
Nanomaterials (Basel) ; 12(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36079992

ABSTRACT

The thermal-assisted exfoliation phenomena of boehmite particles under moderate heating rates were examined. The exfoliation that generated flakes of 5−6 nm in thickness can be achieved because of the perfect cleavage on the boehmite particles that are stripped when thermal treatments bring about dehydration and γ-Al2O3 formation in sequential phase transformation of boehmite. Examinations of the exfoliation effects were carried out on calcined boehmite single crystal particles, which were about 500 nm in diameter, and obtained at three heating rates 0.5, 1.0, and 2.0 °C/min with the heating schedules. The TEM techniques, BET-N2 measurements, XRD-Scherrer equation, and AFM images were employed in the examination. That the BET values increased as increasing of exfoliated flakes reflected two stages of exfoliation. In the beginning stage, during which the BET values were <40 m2/g, the exfoliation resulted from the stress produced by dehydration. In the second stage, the increased rate of surface area was due to the additional force, which originated from the γ-Al2O3 formation. Exfoliation occurred on the cleavage planes {010}, the side pinacoid of the boehmite particle. The generation of flakes resulted in the thinning of boehmite particles. Some of the flakes preserved the external form of boehmite crystals. From the surface energy evaluations of boehmite and γ-Al2O3, it can be inferred that exfoliation is a natural way of thermal treatment.

3.
Materials (Basel) ; 15(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35629704

ABSTRACT

In this study, amorphous FeSiCrB alloy powder, carbonyl iron powder, and high-temperature heat-resistant silicone resin were used to prepare power molding inductors, and the effects of different heat treatment procedures on the magnetic properties were investigated. Two heat treatment procedures were used. Procedure 1: Amorphous FeSiCrB alloy powder was pre-heat-treated, then mixed with carbonyl iron powder and silicone resin and uniaxially pressed to prepare power inductors. Procedure 2: A mixture of amorphous FeSiCrB alloy powder, carbonyl iron powder, and silicone resin was uniaxially pressed. After dry pressing, the compacted body was heat-treated at 500 °C. Heat treatment after compaction can reduce the internal strain caused by high-pressure compaction and promote the crystallization of superparamagnetic nano-grains simultaneously. Therefore, the compacted sample after heat treatment exhibited better magnetic properties.

4.
Materials (Basel) ; 14(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671680

ABSTRACT

A screen printing process was used to substitute dry molding to solve the uneven compaction problem in the coil center column during molding in this study. FeSiCr alloy powders (FSC) with a large particle size were mixed with fine spherical carbonyl iron powder to increase the compaction density. FSC to carbonyl iron powder (CIP) mixing ratio effects on magnetic paste rheological behaviors and magnetic properties of the molding coil prepared using screen printing were investigated. A magnetic paste with the lowest viscosity can be obtained using 3C7F (30% CIP + 70% FSC) due to the small-sized CIP adsorbed onto the FSC surface. This process reduces the interlocked network formation resulting from the CIP. The toroidal core with 3C7F exhibited the highest relative density and highest inductance. The coils with pure CIP and higher CIP content exhibited the better DC superposition characteristic. The toroidal core loss increased rapidly as the FSC content was increased. A proper trade-off between the inductance, DC-bias superposition characteristic, and magnetic core loss can be reached by choosing a suitable powder mixing ratio.

SELECTION OF CITATIONS
SEARCH DETAIL
...