Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 162(2): 414-21, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-22800583

ABSTRACT

Our goal was to enhance ultrasound (US)-targeted skeletal muscle transfection through the use of poly(ethyleneglycol) (PEG)/polyethylenimine (PEI) nanocomplex gene carriers and adjustments to US and microbubble (MB) parameters. C57BL/6 mice received an intravenous infusion of MBs and either "naked" luciferase plasmid or luciferase plasmid condensed in PEG/PEI nanocomplexes. Pulsed ultrasound (1 MHz; 0.6 MPa or 0.8 MPa) was applied to the right hindlimb for 12 min. Luciferase activity in both hindlimbs was assessed at 3, 5, 7, and 10 days post-treatment by bioluminescent imaging. When targeted to hindlimb using unsorted MBs and 0.6 MPa US, 7 days after treatment, we observed a >60-fold increase in luciferase activity in PEG/PEI nanocomplex-treated muscles over muscles treated with "naked" plasmid DNA. Luciferase activity was consistently greater after treatment with PEG/PEI nanocomplexes at 0.6 MPa as compared to 0.8 MPa. The combination of small diameter MBs and 0.6 MPa US also resulted in significantly greater gene expression when compared to concentration matched intramuscular injections, a control condition in which considerably more PEG/PEI nanocomplexes were present in tissue. This result suggests that, in addition to facilitating PEG/PEI nanocomplex delivery from the bloodstream to tissue, US enhances transfection via one or more secondary mechanisms, including increased cellular uptake and/or trafficking to the nucleus of PEG/PEI nanocomplexes. We conclude that PEG/PEI nanocomplexes may be used to markedly enhance the amplitude of US-MB-targeted skeletal muscle transfection and that activating "small" MBs with a moderate level (0.6 MPa) of acoustic pressure can further enhance these effects.


Subject(s)
Microbubbles , Muscle, Skeletal/metabolism , Polyethylene Glycols/administration & dosage , Polyethyleneimine/analogs & derivatives , Transfection/methods , Ultrasonics , Animals , DNA/administration & dosage , DNA/chemistry , Genetic Vectors , Luciferases/genetics , Mice , Mice, Inbred C57BL , Plasmids , Polyethylene Glycols/chemistry , Polyethyleneimine/administration & dosage , Polyethyleneimine/chemistry , Serum Albumin/chemistry
2.
Small ; 7(9): 1227-35, 2011 May 09.
Article in English | MEDLINE | ID: mdl-21456081

ABSTRACT

Intravenously injected nanoparticles can be delivered to skeletal muscle through capillary pores created by the activation of microbubbles with ultrasound; however, strategies that utilize coinjections of free microbubbles and nanoparticles are limited by nanoparticle dilution in the bloodstream. Here, improvement in the delivery of fluorescently labeled ≈150 nm poly(lactic-co-glycolic acid) nanoparticles to skeletal muscle is attempted by covalently linking them to albumin-shelled microbubbles in a composite agent formulation. Studies are performed using an experimental model of peripheral arterial disease, wherein the right and left femoral arteries of BalbC mice are surgically ligated. Four days after arterial ligation, composite agents, coinjected microbubbles and nanoparticles, or nanoparticles alone are administered intravenously and 1 MHz pulsed ultrasound was applied to the left hindlimb. Nanoparticle delivery was assessed at 0, 1, 4, and 24 h post-treatment by fluorescence-mediated tomography. Within the coinjection group, both microbubbles and ultrasound are found to be required for nanoparticle delivery to skeletal muscle. Within the composite agent group, nanoparticle delivery is found to be enhanced 8- to 18-fold over 'no ultrasound' controls, depending on the time of measurement. A maximum of 7.2% of the initial nanoparticle dose per gram of tissue was delivered at 1 hr in the composite agent group, which was significantly greater than in the coinjection group (3.6%). It is concluded that covalently linking 150 nm-diameter poly(lactic-co-glycolic acid) nanoparticles to microbubbles before intravenous injection does improve their delivery to skeletal muscle.


Subject(s)
Injections, Intravenous/methods , Lactic Acid/chemistry , Microbubbles , Muscle, Skeletal/metabolism , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , Animals , Mice , Mice, Inbred BALB C , Polylactic Acid-Polyglycolic Acid Copolymer , Ultrasonics
SELECTION OF CITATIONS
SEARCH DETAIL
...