Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 349
Filter
1.
Sci Signal ; 17(840): eadc9142, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861615

ABSTRACT

Neuroendocrine prostate cancer (PCa) (NEPC), an aggressive subtype that is associated with poor prognosis, may arise after androgen deprivation therapy (ADT). We investigated the molecular mechanisms by which ADT induces neuroendocrine differentiation in advanced PCa. We found that transmembrane protein 1 (MCTP1), which has putative Ca2+ sensing function and multiple Ca2+-binding C2 domains, was abundant in samples from patients with advanced PCa. MCTP1 was associated with the expression of the EMT-associated transcription factors ZBTB46, FOXA2, and HIF1A. The increased abundance of MCTP1 promoted PC3 prostate cancer cell migration and neuroendocrine differentiation and was associated with SNAI1-dependent EMT in C4-2 PCa cells after ADT. ZBTB46 interacted with FOXA2 and HIF1A and increased the abundance of MCTP1 in a hypoxia-dependent manner. MCTP1 stimulated Ca2+ signaling and AKT activation to promote EMT and neuroendocrine differentiation by increasing the SNAI1-dependent expression of EMT and neuroendocrine markers, effects that were blocked by knockdown of MCTP1. These data suggest an oncogenic role for MCTP1 in the maintenance of a rare and aggressive prostate cancer subtype through its response to Ca2+ and suggest its potential as a therapeutic target.


Subject(s)
Cell Differentiation , Epithelial-Mesenchymal Transition , Monocarboxylic Acid Transporters , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Epithelial-Mesenchymal Transition/drug effects , Cell Differentiation/drug effects , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line, Tumor , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Gene Expression Regulation, Neoplastic , Calcium Signaling/drug effects , Androgens/metabolism , Androgens/pharmacology , Neuroendocrine Cells/metabolism , Neuroendocrine Cells/pathology , Animals , Cell Movement/drug effects , PC-3 Cells , Symporters
2.
Cell Commun Signal ; 22(1): 266, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741139

ABSTRACT

Glioblastoma (GBM) is a type of brain cancer categorized as a high-grade glioma. GBM is characterized by limited treatment options, low patient survival rates, and abnormal serotonin metabolism. Previous studies have investigated the tumor suppressor function of aldolase C (ALDOC), a glycolytic enzyme in GBM. However, it is unclear how ALDOC regulates production of serotonin and its associated receptors, HTRs. In this study, we analyzed ALDOC mRNA levels and methylation status using sequencing data and in silico datasets. Furthermore, we investigated pathways, phenotypes, and drug effects using cell and mouse models. Our results suggest that loss of ALDOC function in GBM promotes tumor cell invasion and migration. We observed that hypermethylation, which results in loss of ALDOC expression, is associated with serotonin hypersecretion and the inhibition of PPAR-γ signaling. Using several omics datasets, we present evidence that ALDOC regulates serotonin levels and safeguards PPAR-γ against serotonin metabolism mediated by 5-HT, which leads to a reduction in PPAR-γ expression. PPAR-γ activation inhibits serotonin release by HTR and diminishes GBM tumor growth in our cellular and animal models. Importantly, research has demonstrated that PPAR-γ agonists prolong animal survival rates and increase the efficacy of temozolomide in an orthotopic brain model of GBM. The relationship and function of the ALDOC-PPAR-γ axis could serve as a potential prognostic indicator. Furthermore, PPAR-γ agonists offer a new treatment alternative for glioblastoma multiforme (GBM).


Subject(s)
Glioblastoma , PPAR gamma , Temozolomide , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Animals , PPAR gamma/metabolism , Mice , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Disease Progression , Serotonin/metabolism , Signal Transduction/drug effects , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , PPAR-gamma Agonists
3.
Cell Death Dis ; 15(5): 310, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697967

ABSTRACT

Breast cancer (BC) is the most common cancer and the leading cause of cancer-related deaths in women worldwide. The 5-year survival rate is over 90% in BC patients, but once BC cells metastasis into distal organs, it is dramatically decreasing to less than 30%. Especially, triple-negative breast cancer (TNBC) patients usually lead to poor prognosis and survival because of metastasis. Understanding the underline mechanisms of TNBC metastasis is a critical issue. Non-coding RNAs, including of lncRNAs and microRNAs, are non-protein-coding transcripts and have been reported as important regulators in TNBC metastasis. However, the underline mechanisms for non-coding RNAs regulating TNBC metastasis remain largely unclear. Here, we found that lncRNA MIR4500HG003 was highly expressed in highly metastatic MDA-MB-231 TNBC cells and overexpression of MIR4500HG003 enhanced metastasis ability in vitro and in vivo and promoted MMP9 expression. Furthermore, we found MIR4500HG003 physically interacted with miR-483-3p and reporter assay showed miR-483-3p attenuated MMP9 expression. Importantly, endogenous high expressions of MIR4500HG003 were correlated with tumor recurrence in TNBC patients with tumor metastasis. Taken together, our findings suggested that MIR4500HG003 promotes metastasis of TNBC through miR-483-3p-MMP9 signaling axis and may be used as potential prognostic marker for TNBC patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Matrix Metalloproteinase 9 , MicroRNAs , Neoplasm Metastasis , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Female , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Cell Line, Tumor , Animals , Mice , Mice, Nude , Cell Movement/genetics , Mice, Inbred BALB C
4.
ACS Appl Mater Interfaces ; 16(20): 25622-25636, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739745

ABSTRACT

Breast cancer is a malignant tumor with a high mortality rate among women. Therefore, it is necessary to develop novel therapies to effectively treat this disease. In this study, iron selenide nanorods (FeSe2 NRs) were designed for use in magnetic hyperthermic, photothermal, and chemodynamic therapy (MHT/PTT/CDT) for breast cancer. To illustrate their efficacy, FeSe2 NRs were modified with the chemotherapeutic agent methotrexate (MTX). MTX-modified FeSe2 (FeSe2-MTX) exhibited excellent controlled drug release properties. Fe2+ released from FeSe2 NRs induced the release of •OH from H2O2 via a Fenton/Fenton-like reaction, enhancing the efficacy of CDT. Under alternating magnetic field (AMF) stimulation and 808 nm laser irradiation, FeSe2-MTX exerted potent hyperthermic and photothermal effects by suppressing tumor growth in a breast cancer nude mouse model. In addition, FeSe2 NRs can be used for magnetic resonance imaging in vivo by incorporating their superparamagnetic characteristics into a single nanomaterial. Overall, we presented a novel technique for the precise delivery of functional nanosystems to tumors that can enhance the efficacy of breast cancer treatment.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Methotrexate , Mice, Nude , Nanotubes , Methotrexate/chemistry , Methotrexate/pharmacology , Animals , Nanotubes/chemistry , Mice , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Mice, Inbred BALB C , Photothermal Therapy , Iron/chemistry , Selenium Compounds/chemistry , Selenium Compounds/pharmacology , Selenium Compounds/radiation effects , Cell Line, Tumor , Infrared Rays
5.
Biochem Biophys Res Commun ; 720: 150066, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38749193

ABSTRACT

Alveolar and interstitial macrophages play crucial roles in eradicating pathogens and transformed cells in the lungs. The immune checkpoint CD47, found on normal and malignant cells, interacts with the SIRPα ligand on macrophages, inhibiting phagocytosis, antigen presentation, and promoting immune evasion. In this study, we demonstrated that CD47 is not only a transmembrane protein, but that it is also highly concentrated in extracellular vesicles from lung cancer cell lines and patient plasma. Abundant CD47 was observed in the cytoplasm of lung cancer cells, aligning with our finding that it was packed into extracellular vesicles for physiological and pathological functions. In our clinical cohort, extracellular vesicle CD47 was significantly higher in the patients with early-stage lung cancer, emphasizing innate immunity inactivation in early tumor progression. To validate our hypothesis, we established an orthotopic xenograft model mimicking lung cancer development, which showed increased serum soluble CD47 and elevated IL-10/TNF-α ratio, indicating an immune-suppressive tumor microenvironment. CD47 expression led to reduced tumor-infiltrating macrophages during progression, while there was a post-xenograft increase in tumor-associated macrophages. In conclusion, CD47 is pivotal in early lung cancer progression, with soluble CD47 emerging as a key pathological effector.


Subject(s)
CD47 Antigen , Disease Progression , Lung Neoplasms , CD47 Antigen/metabolism , CD47 Antigen/immunology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Humans , Animals , Cell Line, Tumor , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Mice , Tumor Escape , Immune Evasion , Tumor Microenvironment/immunology , Macrophages/immunology , Macrophages/metabolism , Female , Neoplasm Staging
6.
J Mater Chem B ; 12(15): 3569-3593, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38494982

ABSTRACT

In recent years, inorganic nanoparticles (NPs) have attracted increasing attention as potential theranostic agents in the field of oncology. Photothermal therapy (PTT) is a minimally invasive technique that uses nanoparticles to produce heat from light to kill cancer cells. PTT requires two essential elements: a photothermal agent (PTA) and near-infrared (NIR) radiation. The role of PTAs is to absorb NIR, which subsequently triggers hyperthermia within cancer cells. By raising the temperature in the tumor microenvironment (TME), PTT causes damage to the cancer cells. Nanoparticles (NPs) are instrumental in PTT given that they facilitate the passive and active targeting of the PTA to the TME, making them crucial for the effectiveness of the treatment. In addition, specific targeting can be achieved through their enhanced permeation and retention effect. Thus, owing to their significant advantages, such as altering the morphology and surface characteristics of nanocarriers comprised of PTA, NPs have been exploited to facilitate tumor regression significantly. This review highlights the properties of PTAs, the mechanism of PTT, and the results obtained from the improved curative efficacy of PTT by utilizing NPs platforms.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Phototherapy/methods , Hyperthermia, Induced/methods , Neoplasms/drug therapy , Neoplasms/pathology , Theranostic Nanomedicine/methods , Tumor Microenvironment
7.
Environ Pollut ; 347: 123722, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38460589

ABSTRACT

An understanding of the risk of gene deletion and mutation posed by endocrine-disrupting chemicals (EDCs) is necessary for the identification of etiological reagents for many human diseases. Therefore, the characterization of the genetic traits caused by developmental exposure to EDCs is an important research subject. A new regenerative approach using embryonic stem cells (ESCs) holds promise for the development of stem-cell-based therapies and the identification of novel therapeutic agents against human diseases. Here, we focused on the characterization of the genetic traits and alterations in pluripotency/stemness triggered by phthalate ester derivatives. Regarding their in vitro effects, we reported the abilities of ESCs regarding proliferation, cell-cycle control, and neural ectoderm differentiation. The expression of their stemness-related genes and their genetic changes toward neural differentiation were examined, which led to the observation that the tumor suppressor gene product p53/retinoblastoma protein 1 and its related cascades play critical functions in cell-cycle progression, cell death, and neural differentiation. In addition, the expression of neurogenic differentiation 1 was affected by exposure to di-n-butyl phthalate in the context of cell differentiation into neural lineages. The nervous system is one of the most sensitive tissues to exposure to phthalate ester derivatives. The present screening system provides a good tool for studying the mechanisms underlying the effects of EDCs on the developmental regulation of humans and rodents, especially on the neuronal development of ESCs.


Subject(s)
Dibutyl Phthalate , Mouse Embryonic Stem Cells , Phthalic Acids , Animals , Humans , Mice , Dibutyl Phthalate/toxicity , Cell Differentiation , Esters
8.
Oncogene ; 43(7): 511-523, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177412

ABSTRACT

Leukocyte cell-derived chemotaxin 2 (LECT2) is a multifunctional cytokine that can bind to several receptors and mediate distinct molecular pathways in various cell settings. Changing levels of LECT2 have been implicated in multiple human disease states, including cancers. Here, we have demonstrated reduced serum levels of LECT2 in patients with epithelial ovarian cancer (EOC) and down-regulated circulating Lect2 as the disease progresses in a syngeneic mouse ID8 EOC model. Using the murine EOC model, we discovered that loss of Lect2 promotes EOC progression by modulating both tumor cells and the tumor microenvironment. Lect2 inhibited EOC cells' invasive phenotype and suppressed EOC's transcoelomic metastasis by targeting c-Met signaling. In addition, Lect2 downregulation induced the accumulation and activation of myeloid-derived suppressor cells (MDSCs). This fostered an immunosuppressive microenvironment in EOC by inhibiting T-cell activation and skewing macrophages toward an M2 phenotype. The therapeutic efficacy of programmed cell death-1 (PD-1)/PD-L1 pathway blockade for the ID8 model was significantly hindered. Overall, our data highlight multiple functions of Lect2 during EOC progression and reveal a rationale for synergistic immunotherapeutic strategies by targeting Lect2.


Subject(s)
Ovarian Neoplasms , Humans , Mice , Animals , Female , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/metabolism , Macrophages/metabolism , Signal Transduction , Immunosuppressive Agents , Disease Models, Animal , Tumor Microenvironment/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism
10.
Cell Death Dis ; 15(1): 82, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38263290

ABSTRACT

The matrix metalloprotease A disintegrin and metalloprotease with thrombospondin motifs 1 (ADAMTS1) was reported to be involved in tumor progression in several cancer types, but its contributions appear discrepant. At present, the role of ADAMTS1 in oral squamous cell carcinoma (SCC; OSCC) remains unclear. Herein, The Cancer Genome Atlas (TCGA) database showed that ADAMTS1 transcripts were downregulated in head and neck SCC (HNSCC) tissues compared to normal tissues, but ADAMTS1 levels were correlated with poorer prognoses of HNSCC patients. In vitro, we observed that ADAMTS1 expression levels were correlated with the invasive abilities of four OSCC cell lines, HSC-3, SCC9, HSC-3M, and SAS. Knockdown of ADAMTS1 in OSCC cells led to a decrease and its overexpression led to an increase in cell-invasive abilities in vitro as well as tumor growth and lymph node (LN) metastasis in OSCC xenografts. Mechanistic investigations showed that the cyclic increase in ADAMTS1-L1 cell adhesion molecule (L1CAM) axis-mediated epidermal growth factor receptor (EGFR) activation led to exacerbation of the invasive abilities of OSCC cells via inducing epithelial-mesenchymal transition (EMT) progression. Clinical analyses revealed that ADAMTS1, L1CAM, and EGFR levels were all correlated with worse prognoses of HNSCC patients, and patients with ADAMTS1high/L1CAMhigh or EGFRhigh tumors had the shortest overall and disease-specific survival times. As to therapeutic aspects, we discovered that an edible plant-derived flavonoid, apigenin (API), drastically inhibited expression of the ADAMTS1-L1CAM-EGFR axis and reduced the ADAMTS1-triggered invasion and LN metastasis of OSCC cells in vitro and in vivo. Most importantly, API treatment significantly prolonged survival rates of xenograft mice with OSCC. In summary, ADAMTS1 may be a useful biomarker for predicting OSCC progression, and API potentially retarded OSCC progression by targeting the ADAMTS1-L1CAM-EGFR signaling pathway.


Subject(s)
ADAMTS1 Protein , ErbB Receptors , Mouth Neoplasms , Neural Cell Adhesion Molecule L1 , Squamous Cell Carcinoma of Head and Neck , Animals , Humans , Mice , Apigenin , Epithelial-Mesenchymal Transition , Lymphatic Metastasis
11.
Eur J Pharmacol ; 962: 176171, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37996009

ABSTRACT

Our previous study reported that the heterodimer of Angiotensin II Type I Receptor (AT1R) and Mu-Opioid Receptor 1 (MOR1) involves Nitric Oxide (NO) reduction which leads to elevation of blood pressure. Secondly, we showed that Toll-like Receptor 4 (TLR4) may be involved in the heterodimerization of AT1R and MOR1 in the brainstem Nucleus Tractus Solitarii (NTS), which regulates systemic blood pressure and gastric nitric oxide through the insulin pathway. Here, we investigated the role of microglial activation and TLR4 in the heterodimerization of AT1R and MOR1. Hypertensive rats were established after four weeks of fructose consumption. SBP of rats was measured using non-invasive blood pressure method. PLA technique was utilized to determine protein-protein interaction in the nucleus tractus solitarii. Results showed that the level of MOR-1 and AT1R was induced significantly in the fructose group compared with control. PLA signal potentially showed that AT1R and MOR1 were formed in the nucleus tractus solitarii after fructose consumption. Meanwhile, the innate immune cell in the CNS microglia was observed in the nucleus tractus solitarii using biomarkers and was activated. TLR4 inhibitor CLI-095, was administered to animals to suppress the neuroinflammation and microglial activation. CLI-095 treatment reduced the heterodimer formation of AT1R and MOR1 and restored nitric oxide production in the nucleus tractus solitarii. These findings imply that TLR4-primed neuroinflammation involves formation of heterodimers AT1R and MOR1 in the nucleus tractus solitarii which leads to increase in systemic blood pressure.


Subject(s)
Angiotensin II , Hypertension , Rats , Animals , Angiotensin II/pharmacology , Microglia/metabolism , Toll-Like Receptor 4/metabolism , Nitric Oxide/metabolism , Receptors, Opioid/metabolism , Fructose , Neuroinflammatory Diseases , Blood Pressure , Receptor, Angiotensin, Type 1/metabolism , Polyesters , Solitary Nucleus
12.
Small ; 20(2): e2306020, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37661358

ABSTRACT

To date, all-inorganic lead halide perovskite quantum dots have emerged as promising materials for photonic, optoelectronic devices, and biological applications, especially in solar cells, raising numerous concerns about their biosafety. Most of the studies related to the toxicity of perovskite quantum dots (PeQDs) have focused on the potential risks of hybrid perovskites by using zebrafish or human cells. So far, the neurotoxic effects and fundamental mechanisms of PeQDs remain unknown. Herein, a comprehensive methodology is designed to investigate the neurotoxicity of PeQDs by using Caenorhabditis elegans as a model organism. The results show that the accumulation of PeQDs mainly focuses on the alimentary system and head region. Acute exposure to PeQDs results in a decrease in locomotor behaviors and pharyngeal pumping, whereas chronic exposure to PeQDs causes brood decline and shortens lifespan. In addition, some abnormal issues occur in the uterus during reproduction assays, such as vulva protrusion, impaired eggs left in the vulva, and egg hatching inside the mother. Excessive reactive oxygen species formation is also observed. The neurotoxicity of PeQDs is explained by gene expression. This study provides a complete insight into the neurotoxicity of PeQD and encourages the development of novel nontoxic PeQDs.


Subject(s)
Inorganic Chemicals , Nanoparticles , Oxides , Titanium , Humans , Female , Animals , Caenorhabditis elegans , Zebrafish , Calcium Compounds/toxicity , Nanoparticles/toxicity
13.
Int J Mol Sci ; 24(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37958895

ABSTRACT

Gastric cancer (GC) organoids are frequently used to examine cell proliferation and death as well as cancer development. Invasion/migration assay, xenotransplantation, and reactive oxygen species (ROS) production were used to examine the effects of antioxidant drugs, including perillaldehyde (PEA), cinnamaldehyde (CA), and sulforaphane (SFN), on GC. PEA and CA repressed the proliferation of human GC organoids, whereas SFN enhanced it. Caspase 3 activities were also repressed on treatment with PEA and CA. Furthermore, the tumor formation and invasive activities were repressed on treatment with PEA and CA, whereas they were enhanced on treatment with SFN. These results in three-dimensional (3D)-GC organoids showed the different cancer development of phase II enzyme ligands in 2D-GC cells. ROS production and the expression of TP53, nuclear factor erythroid 2-related factor (NRF2), and Jun dimerization protein 2 were also downregulated on treatment with PEA and CA, but not SFN. NRF2 knockdown reversed the effects of these antioxidant drugs on the invasive activities of the 3D-GC organoids. Moreover, ROS production was also inhibited by treatment with PEA and CA, but not SFN. Thus, NRF2 plays a key role in the differential effects of these antioxidant drugs on cancer progression in 3D-GC organoids. PEA and CA can potentially be new antitumorigenic therapeutics for GC.


Subject(s)
Antioxidants , Stomach Neoplasms , Humans , Antioxidants/pharmacology , Apoptosis , Cell- and Tissue-Based Therapy , Isothiocyanates/pharmacology , Isothiocyanates/metabolism , NF-E2-Related Factor 2/metabolism , Organoids/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Sulfoxides/pharmacology
14.
Nat Commun ; 14(1): 6692, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872156

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) tumours carry multiple gene mutations and respond poorly to treatments. There is currently an unmet need for drug carriers that can deliver multiple gene cargoes to target high solid tumour burden like PDAC. Here, we report a dual targeted extracellular vesicle (dtEV) carrying high loads of therapeutic RNA that effectively suppresses large PDAC tumours in mice. The EV surface contains a CD64 protein that has a tissue targeting peptide and a humanized monoclonal antibody. Cells sequentially transfected with plasmid DNAs encoding for the RNA and protein of interest by Transwell®-based asymmetric cell electroporation release abundant targeted EVs with high RNA loading. Together with a low dose chemotherapy drug, Gemcitabine, dtEVs suppress large orthotopic PANC-1 and patient derived xenograft tumours and metastasis in mice and extended animal survival. Our work presents a clinically accessible and scalable way to produce abundant EVs for delivering multiple gene cargoes to large solid tumours.


Subject(s)
Carcinoma, Pancreatic Ductal , Extracellular Vesicles , Pancreatic Neoplasms , Humans , Animals , Mice , Deoxycytidine/therapeutic use , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/metabolism , RNA , Extracellular Vesicles/metabolism , Cell Line, Tumor , Pancreatic Neoplasms
15.
Nanoscale ; 15(38): 15558-15572, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37721121

ABSTRACT

Single-atom nanozymes (SANs) are the latest trend in biomaterials research and promote the application of single atoms in biological fields and the realization of protein catalysis in vivo with inorganic nanoparticles. Carbon quantum dots (CDs) have excellent biocompatibility and fluorescence properties as a substrate carrying a single atom. It is difficult to break through pure-phase single-atom materials with quantum dots as carriers. In addition, there is currently no related research in the single-atom field in the context of oral cancer, especially head and neck squamous cell carcinoma. This research developed a lipid surface-coated nanozyme combined with CDs, single-atomic gold, and modified lipid ligands (DSPE-PEG) with transferrin (Tf) to treat oral squamous cell carcinoma. The study results have demonstrated that surface-modified single-atom carbon quantum dots (m-SACDs) exhibit excellent therapeutic effects and enable in situ image tracking for diagnosing and treating head and neck squamous carcinoma (HNSCC).


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Photochemotherapy , Humans , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/drug therapy , Carbon/chemistry , Oxidative Stress , Lipids/chemistry
16.
Behav Brain Res ; 453: 114613, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37544369

ABSTRACT

Stress is considered a crucial determinant influencing health capacity in modern society. Long-term stress makes individuals more susceptible to mental dysfunctions, among which depression and anxiety are two major mental disorders. The success of using selective serotonin reuptake inhibitors (SSRIs) to treat these two disorders highlights the involvement of the central serotonergic (5-HT) system. Later studies suggest both presynaptic and postsynaptic 5-HT profiles should be considered for the effects of SSRIs, making it difficult to interpret the etiological and therapeutic mechanisms underlying depression and anxiety. The present study aims to examine whether the intervention of escitalopram (Es, 5 mg/kg daily for 14 days) can reverse the behavioral phenotypes of both depression-like [by sucrose preference test (SPT) and forced swim test (FST)] and anxiety-like [by avoidance latency and escape latency in elevated-T maze (ETM)] behaviors, and the brain area-dependent neurochemical changes of 5-HT profiles of the terminal regions regarding both synaptic efflux and tissue levels in rats of chronic mild stress (CMS). Our results showed that: (i) Even mild stresses when presented in an unpredictable and long-term manner, can induce both depression-like and anxiety-like behaviors. (ii) Depressive profile indexed by SPT was more sensitive to reflect the Es effect than that of FST. (iii) Es did not significantly affect the CMS-induced anxiety-like symptoms indexed by ETM. (iv) Changes in the protein expression of 5-HT1A receptors in the prefrontal cortex and hippocampus were compatible with the treatment outcome. Our results contributed to the understanding of stress-induced mood dysfunction and the involvement of central 5-HT.


Subject(s)
Escitalopram , Selective Serotonin Reuptake Inhibitors , Rats , Animals , Selective Serotonin Reuptake Inhibitors/pharmacology , Depression/drug therapy , Depression/etiology , Serotonin/metabolism , Anxiety/drug therapy , Anxiety/etiology , Hippocampus/metabolism
17.
Oncogene ; 42(39): 2919-2931, 2023 09.
Article in English | MEDLINE | ID: mdl-37620448

ABSTRACT

Leptomeningeal metastasis (LM) occurs when tumor cells spread to the leptomeningeal space surrounding the brain and the spinal cord, thereby causing poor clinical outcomes. The triple-negative breast cancer (TNBC) has been associated with symptoms of LM and mechanism remained unclear. Through proteomic analysis, we identified high expression of ICAM2 in leptomeningeal metastatic TNBC cells, which promoted the colonization of the spinal cord and resulted in poor survival in vivo. Two-way demonstration indicated that high levels of ICAM2 promoted blood-cerebrospinal fluid barrier (BCB) adhesion, trans-BCB migration, and stemness abilities and determined the specificity of LM in vivo. Furthermore, pull-down and antibody neutralizing assay revealed that ICAM2 determined the specificity of LM through interactions with ICAM1 in the choroid plexus epithelial cells. Therefore, neutralizing ICAM2 can attenuate the progression of LM and prolong survival in vivo. The results suggested that targeting ICAM2 is a potential therapeutic strategy for LM in TNBC.


Subject(s)
Meningeal Neoplasms , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Proteomics , Cell Adhesion Molecules , Epithelial Cells/metabolism , Antigens, CD
18.
J Biomed Sci ; 30(1): 68, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580757

ABSTRACT

BACKGROUND: KH-type splicing regulatory protein (KHSRP, also called KSRP), a versatile RNA-binding protein, plays a critical role in various physiological and pathological conditions through modulating gene expressions at multiple levels. However, the role of KSRP in clear cell renal cell carcinoma (ccRCC) remains poorly understood. METHODS: KSRP expression was detected by a ccRCC tissue microarray and evaluated by an in silico analysis. Cell loss-of-function and gain-of-function, colony-formation, anoikis, and transwell assays, and an orthotopic bioluminescent xenograft model were conducted to determine the functional role of KRSP in ccRCC progression. Micro (mi)RNA and complementary (c)DNA microarrays were used to identify downstream targets of KSRP. Western blotting, quantitative real-time polymerase chain reaction, and promoter- and 3-untranslated region (3'UTR)-luciferase reporter assays were employed to validate the underlying mechanisms of KSRP which aggravate progression of ccRCC. RESULTS: Our results showed that dysregulated high levels of KSRP were correlated with advanced clinical stages, larger tumor sizes, recurrence, and poor prognoses of ccRCC. Neural precursor cell-expressed developmentally downregulated 4 like (NEDD4L) was identified as a novel target of KSRP, which can reverse the protumorigenic and prometastatic characteristics as well as epithelial-mesenchymal transition (EMT) promotion by KSRP in vitro and in vivo. Molecular studies revealed that KSRP can decrease NEDD4L messenger (m)RNA stability via inducing mir-629-5p upregulation and directly targeting the AU-rich elements (AREs) of the 3'UTR. Moreover, KSRP was shown to transcriptionally suppress NEDD4L via inducing the transcriptional repressor, Wilm's tumor 1 (WT1). In the clinic, ccRCC samples revealed a positive correlation between KSRP and mesenchymal-related genes, and patients expressing high KSRP and low NEDD4L had the worst prognoses. CONCLUSION: The current findings unveil novel mechanisms of KSRP which promote malignant progression of ccRCC through transcriptional inhibition and post-transcriptional destabilization of NEDD4L transcripts. Targeting KSRP and its pathways may be a novel pharmaceutical intervention for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , RNA-Binding Proteins , Humans , 3' Untranslated Regions , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ubiquitin/metabolism
19.
Nucleic Acids Res ; 51(15): 7777-7797, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37497782

ABSTRACT

Trans-spliced RNAs (ts-RNAs) are a type of non-co-linear (NCL) transcripts that consist of exons in an order topologically inconsistent with the corresponding DNA template. Detecting ts-RNAs is often interfered by experimental artifacts, circular RNAs (circRNAs) and genetic rearrangements. Particularly, intragenic ts-RNAs, which are derived from separate precursor mRNA molecules of the same gene, are often mistaken for circRNAs through analyses of RNA-seq data. Here we developed a bioinformatics pipeline (NCLscan-hybrid), which integrated short and long RNA-seq reads to minimize false positives and proposed out-of-circle and rolling-circle long reads to distinguish between intragenic ts-RNAs and circRNAs. Combining NCLscan-hybrid screening and multiple experimental validation steps successfully confirmed that four NCL events, which were previously regarded as circRNAs in databases, originated from trans-splicing. CRISPR-based endogenous genome modification experiments further showed that flanking intronic complementary sequences can significantly contribute to ts-RNA formation, providing an efficient/specific method to deplete ts-RNAs. We also experimentally validated that one ts-RNA (ts-ARFGEF1) played an important role for p53-mediated apoptosis through affecting the PERK/eIF2a/ATF4/CHOP signaling pathway in breast cancer cells. This study thus described both bioinformatics procedures and experimental validation steps for rigorous characterization of ts-RNAs, expanding future studies for identification, biogenesis, and function of these important but understudied transcripts.


Subject(s)
Sequence Analysis, RNA , Trans-Splicing , Genome , RNA Splicing , RNA, Circular , Sequence Analysis, RNA/methods
20.
Cell Death Dis ; 14(5): 304, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37142586

ABSTRACT

Current treatment options for prostate cancer focus on targeting androgen receptor (AR) signaling. Inhibiting effects of AR may activate neuroendocrine differentiation and lineage plasticity pathways, thereby promoting the development of neuroendocrine prostate cancer (NEPC). Understanding the regulatory mechanisms of AR has important clinical implications for this most aggressive type of prostate cancer. Here, we demonstrated the tumor-suppressive role of the AR and found that activated AR could directly bind to the regulatory sequence of muscarinic acetylcholine receptor 4 (CHRM4) and downregulate its expression. CHRM4 was highly expressed in prostate cancer cells after androgen-deprivation therapy (ADT). CHRM4 overexpression may drive neuroendocrine differentiation of prostate cancer cells and is associated with immunosuppressive cytokine responses in the tumor microenvironment (TME) of prostate cancer. Mechanistically, CHRM4-driven AKT/MYCN signaling upregulated the interferon alpha 17 (IFNA17) cytokine in the prostate cancer TME after ADT. IFNA17 mediates a feedback mechanism in the TME by activating the CHRM4/AKT/MYCN signaling-driven immune checkpoint pathway and neuroendocrine differentiation of prostate cancer cells. We explored the therapeutic efficacy of targeting CHRM4 as a potential treatment for NEPC and evaluated IFNA17 secretion in the TME as a possible predictive prognostic biomarker for NEPC.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , N-Myc Proto-Oncogene Protein/metabolism , Proto-Oncogene Proteins c-akt , Androgen Antagonists/therapeutic use , Interferon-alpha/therapeutic use , Tumor Microenvironment , Cell Line, Tumor , Cell Differentiation , Receptors, Androgen/metabolism , Receptor, Muscarinic M4/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...