Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-37906524

ABSTRACT

A novel light-absorbing material of high-entropy oxide (HEO) has been synthesized using the hydrothermal method. The HEO has six metals, namely, Fe, Ni, Mn, Cr, Mg, and Cu. The obtained HEO light absorber is demonstrated to show unprecedented broadband absorption, ranging from 310 to 1400 nm. The photodetector having a structure of Ag/HEO/n-Si has been evaluated for its performance. Under the illumination of various light wavelengths, the photodetector exhibits a remarkably wide range of photoresponse from 365 to 1050 nm, giving wide-spectrum photocurrent densities in the order of 1 mA/cm2, a responsibility as high as 3.5 A/W (850 nm), and an external quantum efficiency (EQE) of more than 700% (850 nm), outperforming all of the reported oxide-based photodetectors. The superior device performance is attributed to the excellent light absorbance and EQE of the oxygen vacancy-containing HEO. Moreover, a number of tests, including the abrasion test, temperature endurance, acidic resistance, on-off switching cycling, and 3 dB bandwidth measurement, show the excellent reliability of the obtained HEO-based photodetector.

2.
Nanoscale Adv ; 5(4): 1086-1094, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36798491

ABSTRACT

Semiconductor colloidal quantum dots (QDs) have been regarded as promising fluorescent materials for chemical sensing, bio-detection and optical communications; yet it still remains challenging to bring out self-powered photodetectors based solely on QDs because the excited charges within QDs are extremely immobile due to their reduced dimensionalities and they hardly form effective photocurrents. Hence, we have attempted to decouple the light-absorption and charge-transport criteria in order to feature highly-sensitive, rapid-response and self-driven photodetectors based on single-layer carbon QD layers (CQDLs) via facile in situ self-assembling deposition with fine control over thickness. We show explicit dark-current suppression by visualizing charge blocking phenomena and screen effects due to layered CQDL structures, which alleviate the movement of leakage carriers crossing over the CQD interlayers. By examining the distribution of electric fields within CQDLs under light excitation, the spatial dependence of the light-trapping effect within CQDLs was confirmed. These features are strongly associated with the thickness tuning of CQDLs, while 65 nm of CQDL thickness could manifest remarkable photoresponsivity above 9.4 mA W-1 and detectivity above 5.9 × 1012 under broadband light illumination. These results demonstrate the insights gained from an understanding of broadband optoelectronics, which might potentially pave the way for further employment in functional photodetection.

3.
Nanoscale Adv ; 4(15): 3172-3181, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36132823

ABSTRACT

Rapid, reliable, and sensitive colorimetric detection has been regarded as a highly potential technique for visually monitoring the cation ions. Yet, insight into detection kinetics and quantitative analysis for colorimetric sensing of sodium ions has rarely been revealed. Herein, in-depth kinetic investigations of colorimetric detection using surface-modified Au-nanoparticle (AuNP) probes were performed for interpreting the correlation of salt concentration, reaction duration, and light absorbance. To envision these undisclosed issues, modification of AuNP surfaces with ascorbic acid was found to be highly essential for boosting the detection sensitivity due to adjusting the zeta potential of AuNP colloids towards a slightly positive value. Next, modeling the light absorbance of AuNPs under various aggregation circumstances was employed, which visually elucidated the color change so that it was visible to the naked eye, due to the intense field localization on the edges of aggregated AuNPs. In addition, the involved activation energy of AuNP aggregation was found to follow the first-order Arrhenius formula, with the extracted value of 22.5 kJ mol-1. Finally, quantitative visualization of colorimetric Na+ ion sensing was realized, and the experimental relation was obtained for explicitly determining the unknown concentration of Na+ ions in a visual manner.

4.
J Hazard Mater ; 421: 126674, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34315025

ABSTRACT

Photocatalytic degradation of organic dyes has been considered one of the promising solutions that enabled to effectively treat the demanding pollutants in wastewater. Yet, insight into the photocatalytic process under both illumination and dark conditions were hitherto missing. Herein, by virtue of incorporating the core-shell Au@CuxS nanoparticles to the ZnO nanowalls synthesized via all-solution synthesis, the intriguing heterostructures allowed to trigger the extraordinary capability of dye degradation either under light irradiance or dark environment. It was found that the coexistence of bi-constituted Cu2S/CuS shells on Au nanoparticles obtained with turning the concentrations of sulfurization acted as the decisive role on day-night active degradation performance, where the degradation efficiency was more than 8.3 times beyond sole ZnO sheets. The mediation of remarkable visible-light absorption and efficient charge separation due to band alignment of heterojunctions were responsible for the improved photodegradation efficiency under visible illuminations. Moreover, at dark environment, the involving peroxidase-like activity of CuxS shells with the mediation of Au nanoparticles facilitated the catalytic formation of hydroxyl radicals, manifesting the oxidative degradation of MB dye. Such all-day active photocatalysts further displayed the capability for the recycling treatment of MB dye, which offered the pathways to potentially treat the organic wastewater.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Catalysis , Gold , Photolysis
5.
RSC Adv ; 11(29): 17840-17848, 2021 May 13.
Article in English | MEDLINE | ID: mdl-35480223

ABSTRACT

Recently, adsorption techniques have emerged as practical and effective methods for removing organic dyes, dramatically extending practical capabilities for treating deleterious pollutants in wastewater. However, an urgent issue restricting the performance of these techniques is that no available absorbents that can be used to treat both cationic and anionic organic dyes have been made with simple and reliable methods until now. Herein, we report a green synthetic strategy for the preparation of SnFe2O4/ZnO nanoparticles decorated on reduced graphene oxide (rGO), exhibiting a remarkably large surface area (120.33 m2 g-1). Substantial adsorption efficiency for removing MB dye was achieved, with 91.3% removal within 20 min at room temperature, and efficiencies of 79.6 to 92.8% are maintained as the pH conditions are varied from 3 to 11. Moreover, under mixed-dye conditions, involving MB, RhB, MO, RB5, and R6G organic materials, with dye concentrations ranging from 0.005 mM to 0.09 mM, an adsorption efficiency of above 50% can be reliably reached within 20 min. Such striking features can be interpreted as arising from a synergistic effect involving the hybrid composite based on a rGO matrix with negative charge and the dispersed SnFe2O4/ZnO nanoparticles with positive charge, additionally offering abundant adsorptive sites to allow reliable dye-adsorption kinetics.

6.
Nanoscale Res Lett ; 14(1): 244, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31338679

ABSTRACT

Ternary ZnO/Cu2O/Si nanowire arrays with vertical regularity were prepared with all-solution processed method at low temperature. In addition to the detailed characterizations of morphologies and crystallographic patterns, the analyses of photoluminescence and photocurrents revealed the sound carrier separation owing from the established step-like band structures. By modeling the photodegradation process of the prepared heterostructures through kinetic investigations and scavenger examinations, the photocatalytic removal of MB dyes was found to follow the second-order kinetic model with reaction constant more than 15.3 times higher than bare Si nanowires and achieved 5.7 times and 3.4 times than ZnO/Si and Cu2O/Si binary heterostructures, respectively. Moreover, the highly stable photoactivity of ZnO/Cu2O/Si photocatalysts was evidenced from the repeated photodegradation tests, which demonstrated the robust photocatalytic efficiency after cycling uses. The facile synthesis along with in-depth mechanism study of such ternary heterostructures could be potential for practical treatment for organic pollutants. KEYWORDS: HeterostructurePhotocatalystSilicon nanowire arraysKinetic study.

7.
ACS Appl Bio Mater ; 2(6): 2528-2538, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-35030708

ABSTRACT

On-site and instant glucose sensing is essential for objectively monitoring the change of glucose content that has decisive effects on the normal regulation of carbon metabolism. Colorimetric synergy based on indicators for real-time sensing seemed to be the potential route, but so far it has remained quite challenge to shift down the detection limit in a stable manner. Also, the lack of a direct identification of the underlying detection mechanism especially on the exhibited color change limited their practical use. In this study, the strategy is to employ the carbon nanodots with silver shells functioning as the highly sensitive indicators that enabled realization of the colorimetric sensing of glucose which is caused by oxidation of the surface silver shell observed by the naked eye. These were based on the robust core/shell architectures that allowed an ultralow limit of detection of 87.3 nM for glucose detection through the formation of Ag2O that led to the obvious particle aggregations, and the results were found to be superior than other reported colorimetric-based glucose sensors by the glucose-oxidase-mediated strategy. Moreover, the reliability tests verified their long-term stability and high resistance for the alteration of environmental pH from 3 to 10 on glucose detection. These features associated with the sound crystalline quality of core/shell nanostructures that could be attributed to the compensation of lattice defects existed in the original carbon nanodots by the Ag-O-C bonding while Ag shells were formed.

8.
Nanoscale Res Lett ; 13(1): 312, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30288628

ABSTRACT

Highly uniformed decorations of Cu2O nanoparticles on the sidewalls of silicon nanowires (SiNWs) with high aspect ratio were prepared through a two-step electroless deposition at room temperature. Morphology evolutions and photocatalytic performance of SiNWs decorated with aggregated and dispersed Cu2O nanoparticles were unveiled, and the correlated photodegradation kinetics was identified. In comparison with the conventional direct loadings where the aggregated Cu2O/SiNW structures were created, the uniform incorporation of Cu2O with SiNWs exhibited more than three and nine times of improved photodegradation efficiency than the aggregated-Cu2O/SiNWs and sole SiNWs, respectively.

9.
Phys Chem Chem Phys ; 19(19): 11786-11792, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28436521

ABSTRACT

Recently, silicon (Si) nanowires have been intensively applied for a wide range of optoelectronic applications. Nevertheless, rare explorations considering the photodegradation of organic pollutants based on Si nanowires were performed, and they still require vast improvement, in particular for their degradation efficiency. In this study, broad-band and high efficiency photocatalytic systems were demonstrated through the good incorporation of Si nanowires with highly fluorescent carbon nanodots. The photodegradation rate of these intriguing heterostructure arrays under a 580 nm light illumination is approximately 6 times higher than that of sole Si nanowires, and more than 3.6 and 4.5 times higher than that of Si nanowire incorporated with silver and gold nanoparticles, respectively. Optimizing the luminescent behaviors of carbon nanodots leads to the involvement of multiple light sources that activate the photoexcitation of carriers within the Si nanowires. This feature was further elucidated by examining the corresponding photocurrents under light illumination, which presents currents 1.9 times higher than those with the sole Si nanowires. In combination with excellent wettability with dye solutions, the present heterostructured nanowire arrays have promised the robust photocatalytic capability with retained efficiency after cycling uses, which may open up unique opportunities for future pollutant detoxification and wastewater treatment.

10.
Chemphyschem ; 16(3): 540-5, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25521287

ABSTRACT

Metal-assisted chemical etching (MaCE) on silicon (Si)-mediated by polyvinylpyrrolidone (PVP)-is systematically investigated herein. It is found that the morphologies and crystallographic natures of the grown silver (Ag) dendrites can be significantly modulated, with the presence of PVP in the MaCE process leading to the formation of faceted Ag dendrites preferentially along the (111) crystallographic phase, rather than along the (200) phase. Further explorations of the PVP-mediated effect on Si etching are also revealed. In contrast to the aligned Si nanowires formed by MaCE without PVP addition, only distributed nanopores with sizes of 200 to 400 nm appear on the Si surfaces in the presence of PVP. The origin of surface polishing on Si in the PVP-mediated MaCE process can be attributed to the distinct transport pathway of holes supplied by the Ag(+) ions, where the holes are injected directly into the primary Ag seeds, rather than through Ag dendrites, thus leading to the isotropic etching of the Si surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...