Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Electrophoresis ; 36(19): 2396-403, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26081373

ABSTRACT

The operating parameters that affect the performance of the online preconcentration technique "analyte focusing by micelle collapse-MEKC (AFMC-MEKC)" were examined using a multivariate approach involving experimental design to determine the sunscreen agents in cosmetics. Compared to the single-variable approach, the advantage of the multivariate approach was that many factors could be investigated simultaneously to obtain the best separation condition. A fractional factorial design was used to identify the fewest significant factors in the central composite design (cCD). The cCD was adopted for evaluating the location of the minimum or maximum response in this study. The influences of the experimental variables on the response were investigated by applying a chromatographic exponential function. The optimized condition and the relationship between the experimental variables were acquired using the JMP software. The ANOVA analysis indicated that the Tris pH value, SDS concentration, and ethanol percentage influenced the separation quality and significantly contributed to the model. The optimized condition of the running buffer was 10 mM Tris buffer (pH 9.5) containing 60 mM SDS, 7 mM γ-CD, and 20% v/v ethanol. The sample was prepared in 100 mM Tris buffer (pH 9.0) containing 7.5 mM SDS and 20% v/v ethanol. The SDS concentration in the sample matrix was slightly greater than the CMC value that makes the micelle be easily collapsed and the analytes be accumulated in the capillary. In addition, sunscreen agents in cosmetics after 1000-fold dilution were successfully determined by AFMC-MEKC.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary/methods , Cosmetics/chemistry , Micelles , Sunscreening Agents/analysis , Multivariate Analysis , Sunscreening Agents/chemistry
2.
J Chromatogr A ; 1383: 175-81, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25637009

ABSTRACT

The on-line preconcentration technique of analyte focusing by micelle collapse-micellar electrokinetic chromatography (AFMC-MEKC) was combined with direct injection without extraction to determine ultraviolet absorbents in sunscreen products. The stacking mechanism is based on the transport, release, and accumulation of analytes bound to micelle carriers that are collapsed into the micelle dilution zone. The following optimized conditions were determined: the running buffer was 10mM Tris buffer (pH 9.5) containing 60mM SDS, 7mM γ-CD and 20% ethanol; the SDS concentration was required to be slightly above the critical micelle concentration (cmc) value (7.4mM) in the sample matrix, which allowed the micelle dilution zone to form when voltage was applied; and finally, the sample was prepared in 100mM Tris buffer (pH 9.0) containing 7.5mM SDS and 20% (v/v) ethanol to provide sufficient resolution and to improve the sensitivity. Samples were injected at 0.5psi for 40s, and the separation voltage was set at 15kV for first 15min and then increased to 23kV to decrease the analysis time. The detection sensitivity for ultraviolet absorbents was enhanced by approximately 41-fold using AFMC-MEKC compared to conventional MEKC. The limit of detection (S/N=3) was 98nM for benzophenone-2 and benzophenone-4. The correlation of the regression curve was greater than 0.995. The relative error and relative standard deviation were lower than 9.94% with high precision and accuracy. The recoveries of nine ultraviolet absorbents in a homemade emulsion were between 95.08% and 104.57%. After optimization and validation, this AFMC-MEKC method combined with direct injection is considered to be established and successfully applicable to commercial sunscreen products.


Subject(s)
Chemistry Techniques, Analytical/methods , Chromatography, Micellar Electrokinetic Capillary , Micelles , Sunscreening Agents/analysis , Benzophenones/analysis , Benzophenones/isolation & purification , Chemistry Techniques, Analytical/instrumentation , Ethanol/chemistry , Sodium Dodecyl Sulfate/chemistry , Sunscreening Agents/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL