Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Comput Neurosci ; 15: 700467, 2021.
Article in English | MEDLINE | ID: mdl-34421565

ABSTRACT

Individuals with mild cognitive impairment (MCI) are at high risk of developing into dementia (e. g., Alzheimer's disease, AD). A reliable and effective approach for early detection of MCI has become a critical challenge. Although compared with other costly or risky lab tests, electroencephalogram (EEG) seems to be an ideal alternative measure for early detection of MCI, searching for valid EEG features for classification between healthy controls (HCs) and individuals with MCI remains to be largely unexplored. Here, we design a novel feature extraction framework and propose that the spectral-power-based task-induced intra-subject variability extracted by this framework can be an encouraging candidate EEG feature for the early detection of MCI. In this framework, we extracted the task-induced intra-subject spectral power variability of resting-state EEGs (as measured by a between-run similarity) before and after participants performing cognitively exhausted working memory tasks as the candidate feature. The results from 74 participants (23 individuals with AD, 24 individuals with MCI, 27 HC) showed that the between-run similarity over the frontal and central scalp regions in the HC group is higher than that in the AD or MCI group. Furthermore, using a feature selection scheme and a support vector machine (SVM) classifier, the between-run similarity showed encouraging leave-one-participant-out cross-validation (LOPO-CV) classification performance for the classification between the MCI and HC (80.39%) groups and between the AD vs. HC groups (78%), and its classification performance is superior to other widely-used features such as spectral powers, coherence, and the complexity estimated by Katz's method extracted from single-run resting-state EEGs (a common approach in previous studies). The results based on LOPO-CV, therefore, suggest that the spectral-power-based task-induced intra-subject EEG variability extracted by the proposed feature extraction framework has the potential to serve as a neurophysiological feature for the early detection of MCI in individuals.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 3573-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26737065

ABSTRACT

This paper presents a robotic gait training system for neuro-motor rehabilitation of hemiplegic stroke survivors. The system is composed of a treadmill consisting of two separated belts, footprint array sensor attached below each belt for gait data acquisition, and an electroencephalography (EEG) device for monitoring brain activities during gait training. The split belt treadmill allow physical therapists to set different treadmill belt velocities to modify physical workload of the patients during walking, thus being able to better improve the symmetry of gait phases between affected and unaffected (sound) legs in comparison with conventional treadmills where there is only one single belt. In contrast to in-shoe pressure sensors, the under-belt footprint sensor array designed in this study not only reduces the preparation complexity of gait training but also collects more gait data for motion analysis. Recorded EEG is segmented synchronously with gait-related events. The processed EEG data can be used for monitoring brain-activities during gait training, providing a neurological approach for motion assessment. One subject with simulated stroke using an ankle-foot orthosis participated in this study. Preliminary results indicate the feasibility of the proposed system to improve gait function and monitor neuro-motor recovery.


Subject(s)
Exercise Therapy/instrumentation , Gait Disorders, Neurologic/rehabilitation , Hemiplegia/rehabilitation , Electroencephalography , Exercise Therapy/methods , Gait , Humans , Leg/physiopathology , Male , Recovery of Function , Robotics , Walking
3.
Sensors (Basel) ; 14(8): 13361-88, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-25061837

ABSTRACT

Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods.


Subject(s)
Electroencephalography/instrumentation , Electroencephalography/methods , Emotions/physiology , Support Vector Machine , Brain-Computer Interfaces , Discriminant Analysis , Humans , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...