Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 21909, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34754026

ABSTRACT

By way of introducing heterogeneous interfaces, the stabilization of crystallographic phases is critical to a viable strategy for developing materials with novel characteristics, such as occurrence of new structure phase, anomalous enhancement in magnetic moment, enhancement of efficiency as nanoportals. Because of the different lattice structures at the interface, heterogeneous interfaces serve as a platform for controlling pseudomorphic growth, nanostructure evolution and formation of strained clusters. However, our knowledge related to the strain accumulation phenomenon in ultrathin Fe layers on face-centered cubic (fcc) substrates remains limited. For Fe deposited on Ir(111), here we found the existence of strain accumulation at the interface and demonstrate a strain driven phase transition in which fcc-Fe is transformed to a bcc phase. By substituting the bulk modulus and the shear modulus and the experimental results of lattice parameters in cubic geometry, we obtain the strain energy density for different Fe thicknesses. A limited distortion mechanism is proposed for correlating the increasing interfacial strain energy, the surface energy, and a critical thickness. The calculation shows that the strained layers undergo a phase transition to the bulk structure above the critical thickness. The results are well consistent with experimental measurements. The strain driven phase transition and mechanism presented herein provide a fundamental understanding of strain accumulation at the bcc/fcc interface.

2.
Nanoscale ; 12(26): 14096-14105, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32584333

ABSTRACT

Due to the widespread applications of biosensors, such as in magnetic resonance imaging, cancer detection and drug delivery, the use of superparamagnetic materials for preparing biosensors has increased greatly. We report herein on a strategy toward fabrication of a nanoscale biosensor composed of superparamagnetic films. On increasing the film thickness of magnetic layers, a phase transition typically occurs from either a low-Curie-temperature state or a superparamagnetic state to a ferromagnetic state. A new finding is demonstrated wherein a phase transition of such a superparamagnetic phase can be induced by controlling the thickness of ultrathin ferromagnetic layers with perpendicular magnetic anisotropy. Both the M-H curve with zero coercive force at 300 K and deviations of the normalized hysteresis loop at 2 K confirm the superparamagnetic state of Co/Ir(111) at room temperature. An overstrained film transforming into clusters (OFTC) model based on the new finding and our experimental evidence is proposed for modeling this phenomenon. From the energetic point of view of the OFTC model, we propose a limited distortion mechanism that can be useful in determining the critical thickness for the phase transition. This mechanism considers the balance between interfacial strain energy and surface free energy. A method for producing superparamagnetic films by taking advantage of the accumulation of strain and relaxation is reported.


Subject(s)
Magnetics , Magnets , Anisotropy , Magnetic Iron Oxide Nanoparticles , Phase Transition
3.
Phys Chem Chem Phys ; 22(26): 14900-14909, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32584355

ABSTRACT

Spintronics can add new functionalities to electronic devices by utilizing the spin degree of freedom of electrons. Investigating magnetic defects is crucial for the performance of spintronics devices. However, the effects of magnetic defects that are introduced by the presence of organic materials on their magnetic properties remain unclear. Herein, we report on a novel method using rubrene combined with Kerr microscopy that enables quantitative and direct measurements of magnetic defect density. For Co/Si(100) at a magnetic field near the coercivity value, Kerr microscopy images show a dark image with some magnetic defects. Because of domain wall motion, small patches gradually change the contrast. These magnetic defects are immovable at different magnetic fields and serve as pinning sites for domain wall motion. Experimental evidence shows that coercive force can be reduced by controlling the magnetic defect density by introducing small amounts of rubrene into the films. Furthermore, direct quantitative measurements of magnetic defects show both a one-dimensional bowing of domain walls and strong defect-domain wall interactions in the films. Based on these findings, we propose a viable strategy for reducing the coercive force of Co/Si(100) by controlling the magnetic defect density and this new information promises to be valuable for future applications of spintronics devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...