Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732720

ABSTRACT

This study reports five types of metal-doped (Co, Cu, Sn, V, and Zr) NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP)/polymer composite solid electrolytes (CSEs) enabling Li4Ti5O12 (LTO) anodes to have high rate capability and excellent cycling performance. The high Li+-conductivity LATP samples are successfully synthesized through a modified sol-gel method followed by thermal calcination. We find that the cation dopants clearly influence the substitution of Al for Ti, with the type of dopant serving as a crucial factor in determining the ionic conductivity and interfacial resistance of the solid electrolyte. The CSE containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and Sn-LATP shows an ionic conductivity of 1.88 × 10-4 S cm-1 at ambient temperature. The optimum conductivity can be attributed to alterations in the lattice parameters and Li+ transport pathways owing to Sn doping. The solid-state cell equipped with the LTO-supported CSE containing Sn-LATP fillers demonstrates both excellent high rate capability at 5 C (with a capacity retention of 86% compared to the value measured at 0.2 C) and superior cycling stability, maintaining high Coulombic efficiency (>99.0%) over 510 cycles. These findings indicate that the proposed CSE is highly promising for use in solid-state lithium batteries with desirable charge-discharge properties and high durability.

2.
Adv Sci (Weinh) ; : e2310062, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38654688

ABSTRACT

To enhance Li storage properties, nitrogenation methods are developed for Si anodes. First, melamine, urea, and nitric oxide (NO) precursors are used to nitrogenize carbon-coated Si particles. The properties of the obtained particles are compared. It is found that the NO process can maximize the graphitic nitrogen (N) content and electronic conductivity of a sample. In addition, optimized N functional groups and O─C species on the electrode surface increase electrolyte wettability. However, with a carbon barrier layer, NO hardly nitrogenizes the Si cores. Therefore, bare Si particles are reacted with NO. Core-shell Si@amorphous SiNx particles are produced using a facile and scalable NO treatment route. The effects of the NO reaction time on the physicochemical properties and charge-discharge performance of the obtained materials are systematically examined. Finally, the Si@SiNx particles are coated with N-doped carbon. Superior capacities of 2435 and 1280 mAh g-1 are achieved at 0.2 and 5 A g-1, respectively. After 300 cycles, 90% of the initial capacity is retained. In addition, differential scanning calorimetry data indicate that the multiple nitrogenation layers formed by NO significantly suppress electrode exothermic reactions during thermal runaway.

3.
Nanomaterials (Basel) ; 14(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38668210

ABSTRACT

In this study, we synthesized a transition metal sulfide (TMS) with a spinel structure, i.e., MnIn2S4 (MIS), using a two-step hydrothermal and sintering process. In the context of lithium-ion battery (LIB) applications, ternary TMSs are being considered as interesting options for anode materials. This consideration arises from their notable attributes, including high theoretical capacity, excellent cycle stability, and cost-effectiveness. However, dramatic volume changes result in the electrochemical performance being severely limited, so we introduced single-walled carbon nanotubes (SWCNTs) and prepared an MIS/SWCNT composite to enhance the structural stability and electronic conductivity. The synthesized MIS/SWCNT composite exhibits better cycle performance than bare MIS. Undergoing 100 cycles, MIS only yields a reversible capacity of 117 mAh/g at 0.1 A/g. However, the MIS/SWCNT composite exhibits a reversible capacity as high as 536 mAh/g after 100 cycles. Moreover, the MIS/SWCNT composite shows a better rate capability. The current density increases with cycling, and the SWCNT composite exhibits high reversible capacities of 232 and 102 mAh/g at 2 A/g and 5 A/g, respectively. Under the same conditions, pristine MIS can only deliver reversible capacities of 21 and 4 mAh/g. The results indicate that MIS/SWCNT composites are promising anode materials for LIBs.

4.
Nanoscale ; 15(40): 16241-16267, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37439261

ABSTRACT

Access to safe drinking water and a hygienic living environment are the basic necessities that encourage healthy living. However, the presence of various pollutants (especially toxic heavy metal ions) at high concentrations in water renders water unfit for drinking and domestic use. The presence of high concentrations of heavy-metal ions (e.g., Pb2+, Hg2+, Cr6+, Cd2+, or Cu2+) greater than their permissible limits adversely affects human health, and increases the risk of cancer of the kidneys, liver, skin, and central nervous system. Therefore, their detection in water is crucial. Due to the various benefits of "green"-synthesized carbon-dots (C-dots) over other materials, these materials are potential candidates for sensing of toxic heavy-metal ions in water sources. C-dots are very small carbon-based nanomaterials that show chemical stability, magnificent biocompatibility, excitation wavelength-dependent photoluminescence (PL), water solubility, simple preparation strategies, photoinduced electron transfer, and the opportunity for functionalization. A new family of C-dots called "carbon quantum dots" (CQDs) are fluorescent zero-dimensional carbon nanoparticles of size < 10 nm. The green synthesis of C-dots has numerous advantages over conventional chemical routes, such as utilization of inexpensive and non-poisonous materials, straightforward operations, rapid reactions, and renewable precursors. Natural sources, such as biomass and biomass wastes, are broadly accepted as green precursors for fabricating C-dots because these sources are economical, ecological, and readily/extensively accessible. Two main methods are available for C-dots production: top-down and bottom-up. Herein, this review article discusses the recent advancements in the green fabrication of C-dots: photostability; surface structure and functionalization; potential applications for the sensing of hazardous anions and toxic heavy-metal ions; binding of toxic ions with C-dots; probable mechanistic routes of PL-based sensing of toxic heavy-metal ions. The green production of C-dots and their promising applications in the sensing of hazardous ions discussed herein provides deep insights into the safety of human health and the environment. Nonetheless, this review article provides a resource for the conversion of low-value biomass and biomass waste into valuable materials (i.e., C-dots) for promising sensing applications.


Subject(s)
Metals, Heavy , Quantum Dots , Humans , Carbon/chemistry , Biomass , Water , Ions , Quantum Dots/chemistry
5.
Polymers (Basel) ; 15(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37376301

ABSTRACT

Nitrogen-doped carbon nanodots (CNDs) were synthesized and utilized as sensing probes to detect different anions and metallic ions within aqueous solutions. The pristine CNDs were developed through a one-pot hydrothermal synthesis. o-Phenylenediamine was used as the precursor. A similar hydrothermal synthesis technique in the presence of polyethylene glycol (PEG) was adopted to form the PEG-coated CND clusters (CND-100k). Through photoluminescence (PL) quenching, both CND and PEG-coated CND suspensions display ultra-high sensitivity and selectivity towards HSO4- anions (Stern-Volmer quenching constant (KSV) value: 0.021 ppm-1 for CND and 0.062 ppm-1 for CND-100k) with an ultra-low detection limit (LOD value: 0.57 ppm for the CND and 0.19 ppm for CND-100k) in the liquid phase. The quenching mechanism of N-doped CNDs towards HSO4- ions involves forming the bidentate as well as the monodentate hydrogen bonding with the sulfate anionic moieties. The detection mechanism of metallic ions analyzed through the Stern-Volmer formulation reveals that the CND suspension is well suited for the detection of Fe3+ (KSV value: 0.043 ppm-1) and Fe2+ (KSV value: 0.0191 ppm-1) ions, whereas Hg2+ (KSV value: 0.078 ppm-1) sensing can be precisely performed by the PEG-coated CND clusters. Accordingly, the CND suspensions developed in this work can be employed as high-performance PL probes for detecting various anions and metallic ions in the liquid phase.

6.
Membranes (Basel) ; 13(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36837704

ABSTRACT

Composite solid electrolytes (CSEs), composed of sodium superionic conductor (NASICON)-type Li1+xAlxTi2-x(PO4)3 (LATP), poly (vinylidene fluoride-hexafluoro propylene) (PVDF-HFP), and lithium bis (trifluoromethanesulfonyl)imide (LiTFSI) salt, are designed and fabricated for lithium-metal batteries. The effects of the key design parameters (i.e., LiTFSI/LATP ratio, CSE thickness, and carbon content) on the specific capacity, coulombic efficiency, and cyclic stability were systematically investigated. The optimal CSE configuration, superior specific capacity (~160 mAh g-1), low electrode polarization (~0.12 V), and remarkable cyclic stability (a capacity retention of 86.8%) were achieved during extended cycling (>200 cycles). In addition, with the optimal CSE structure, a high ionic conductivity (~2.83 × 10-4 S cm-1) was demonstrated at an ambient temperature. The CSE configuration demonstrated in this work can be employed for designing highly durable CSEs with enhanced ionic conductivity and significantly reduced interfacial electrolyte/electrode resistance.

7.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835458

ABSTRACT

Graphene quantum dots (GQDs), nanomaterials derived from graphene and carbon dots, are highly stable, soluble, and have exceptional optical properties. Further, they have low toxicity and are excellent vehicles for carrying drugs or fluorescein dyes. Specific forms of GQDs can induce apoptosis and could be used to treat cancers. In this study, three forms of GQDs (GQD (nitrogen:carbon = 1:3), ortho-GQD, and meta-GQD) were screened and tested for their potential to inhibit breast cancer cell (MCF-7, BT-474, MDA-MB-231, and T-47D) growth. All three GQDs decreased cell viability after 72 h of treatment and specifically affected breast cancer cell proliferation. An assay for the expression of apoptotic proteins revealed that p21 and p27 were up-regulated (1.41-fold and 4.75-fold) after treatment. In particular, ortho-GQD-treated cells showed G2/M phase arrest. The GQDs specifically induced apoptosis in estrogen receptor-positive breast cancer cell lines. These results indicate that these GQDs induce apoptosis and G2/M cell cycle arrest in specific breast cancer subtypes and could potentially be used for treating breast cancers.


Subject(s)
Apoptosis , Breast Neoplasms , Graphite , Quantum Dots , Female , Humans , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cell Cycle Checkpoints , Graphite/pharmacology , Graphite/therapeutic use
8.
Chemosphere ; 318: 137926, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36682636

ABSTRACT

Through developing a highly efficient solid-phase microwave-assisted (SPMA) synthesis technique, we were able to synthesize graphene quantum dots (GQDs) that were doped with nitrogen and boron atoms. The as-synthesized GQDs were employed as sensing probes for detecting pesticides and iron ions within aqueous solutions. The SPMA approach is very versatile for in-situ doping of multiple atoms within the graphitic structure of GQDs. The maximal B/C and N/C atomic ratios within the GQD structures were reached as high as 28.6 and 86.4 at.%, respectively. For the B-/N-codoped GQDs, the N dopants comprises of pyrrolic/pyridinic N and graphitic N, whereas the B doping mainly involves two bonding types (i.e., B4C and BCO2) inserted into or decorated on the GQD skeleton structure. Based on the analysis of the Stern-Volmer plots, the B-/N-codoped GQDs can be employed as probing nanomaterials toward Fe2+ and paraquat detection thanks to their incredible sensitivity throughout the photoluminescent quenching. The PL quenching mechanism of GQDs is usually governed by the GQD‒(paraquat)x intermediates formation and the resulting π-π stacking that can easily quench and aggregate. The findings of this work pave the pathway to engineering the chemical compositions as well as the crystalline structures of GQDs, used for energy and other sensing devices.


Subject(s)
Graphite , Pesticides , Quantum Dots , Graphite/chemistry , Boron , Quantum Dots/chemistry , Nitrogen/chemistry , Microwaves , Paraquat , Ions
9.
J Colloid Interface Sci ; 630(Pt B): 1-10, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36308803

ABSTRACT

The ongoing COVID-19 (i.e., coronavirus) pandemic continues to adversely affect the human life, economy, and the world's ecosystem. Although significant progress has been made in developing antiviral materials for the coronavirus, much more work is still needed. In this work, N-functionalized graphene quantum dots (GQDs) were designed and synthesized as the antiviral nanomaterial for Feline Coronavirus NTU156 (FCoV NTU156) and Enterovirus 71 (EV71)) with ultra-high inhibition (>99.9%). To prepare the GQD samples, a unique solid-phase microwave-assisted technique was developed and the cell toxicity was established on the H171 and H184 cell lines after 72 h incubation, indicating superior biocompatibility. The surface functionality of GQDs (i.e., the phenolic and amino groups) plays a vital role in interacting with the receptor-binding-domain of the spike protein. It was also found that the addition of polyethylene glycol is advantageous for the dispersion and the adsorption of functionalized GQDs onto the virus surface, leading to an enhanced virus inhibition. The functionality of as-prepared GQD nanomaterials was further confirmed where a functionalized GQD-coated glass was shown to be extremely effective in hindering the virus spread for a relatively long period (>20 h).


Subject(s)
COVID-19 , Enterovirus , Graphite , Quantum Dots , Humans , Ecosystem , Antiviral Agents/pharmacology
10.
Polymers (Basel) ; 14(24)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36559909

ABSTRACT

Flame-retardant chemicals are frequently used within consumer products and can even be employed as a treatment on the surface of different types of materials (e.g., wood, steel, and textiles) to prevent fire or limit the rapid spread of flames. Functionalized graphene oxide (FGO) nanosheets are a promising construction coating nanomaterial that can be blended with sodium metasilicate and gypsum to reduce the flammability of construction buildings. In this work, we designed and fabricated novel and halogen-free FGO sheets using the modified Hummers method; and subsequently functionalized them by pentaerythritol through a chemical impregnation process before dispersing them within the construction coating. Scanning electron microscopic images confirm that the FGO-filled coating was uniformly dispersed on the surface of wooden substrates. We identified that the FGO content is a critical factor affecting the fire retardancy. Thermogravimetric analysis of the FGO coating revealed that higher char residue can be obtained at 700 °C. Based on the differential scanning calorimetry, the exothermic peak contained a temperature delay in the presence of FGO sheets, primarily due to the formation of a thermal barrier. Such a significant improvement in the flame retardancy confirms that the FGO nanosheets are superior nanomaterials to be employed as a flame-retardant construction coating nanomaterial for improving thermal management within buildings.

11.
ChemSusChem ; 15(10): e202200345, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35293144

ABSTRACT

A facile method for preparing hierarchical carbon composites that contain activated carbon (AC), carbon nanospheres (CNSs), and carbon nanotubes (CNTs) for use as the electrode material in supercapacitors (SCs) was developed. The CNS/CNT network enabled the formation of three-dimensional conducting pathways within the highly porous AC matrix, effectively reducing the internal resistance of an SC electrode. The specific capacitance, cyclability, voltage window, temperature profile during charging/discharging, leakage current, gas evolution, and self-discharge of the fabricated SCs were systematically investigated and the optimal CNS/CNT ratio was determined. A 2.5 V floating aging test at 70 °C was performed on SCs made with various hierarchical carbon electrodes. Electrochemical impedance spectroscopy, postmortem electron microscopy, Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analyses were conducted to examine the electrode aging behavior. A hierarchical carbon architecture with an appropriate AC/CNS/CNT constituent ratio could significantly improve charge-discharge performance, increase cell reliability, and decrease the aging-related degradation rate.

12.
Nanomaterials (Basel) ; 11(6)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073829

ABSTRACT

To explore aggregate-induced emission (AIE) properties, this study adopts a one-pot hydrothermal route for synthesizing polyethylene glycol (PEG)-coated graphene quantum dot (GQD) clusters, enabling the emission of highly intense photoluminescence under blue light illumination. The hydrothermal synthesis was performed at 300 °C using o-phenylenediamine as the nitrogen and carbon sources in the presence of PEG. Three different solvents, propylene glycol methyl ether acetate (PGMEA), ethanol, and water, were used for dispersing the PEG-coated GQDs, where extremely high fluorescent emission was achieved at 530-550 nm. It was shown that the quantum yield (QY) of PEG-coated GQD suspensions is strongly dependent on the solvent type. The pristine GQD suspension tends to be quenched (i.e., QY: ~1%) when dispersed in PGMEA (aggregation-caused quenching). However, coating GQD nanoparticles with polyethylene glycol results in substantial enhancement of the quantum yield. When investigating the photoluminescence emission from PEG-coated GQD clusters, the surface tension of the solvents was within the range of from 26.9 to 46.0 mN/m. This critical index can be tuned for assessing the transition point needed to activate the AIE mechanism which ultimately boosts the fluorescence intensity. The one-pot hydrothermal route established in this study can be adopted to engineer PEG-coated GQD clusters with solid-state PL emission capabilities, which are needed for next-generation optical, bio-sensing, and energy storage/conversion devices.

13.
ACS Omega ; 6(11): 7851-7861, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33778297

ABSTRACT

This work adopts an efficient chemical-wet method to build a three-dimensional (3D) carbon composite as an electrode material for high-performance supercapacitors (SCs). Carbon dots (CDs), prepared by thermal pyrolysis of citric acid and urea under microwaves at 280 °C, are homogeneously coated onto lignin-based activated carbons (ACs), thus forming the 3D composites possessing an interior surface decorated with CD binding sites. Benefiting from the hydrophilicity and ultrafine size of CDs, the affinity of the electrode surface toward aqueous electrolytes is significantly improved with the addition of CDs, leading to the enhanced effective surface area (i.e., abundant electroactive sites) and a decreased ionic diffusion path. The capacitance of the SCs is improved from 125.8 to 301.7 F g-1 with CD addition. The SC with CD addition possesses improved cycle stability with a coulombic efficiency around 100% after 3000 cycles. After cycling, the ion diffusion coefficient of the CD@AC-11 electrode is enhanced by 25.5 times as compared to that of the pristine AC one. This unique and robust carbon framework can be utilized for engineering the desired pore structure and micropore/mesopore fraction within the AC electrodes. This strategy of CD@AC electrodes demonstrates a promising route for using renewable porous carbon materials in advanced energy-storage devices.

14.
Nanoscale Adv ; 3(10): 2728-2740, 2021 May 18.
Article in English | MEDLINE | ID: mdl-36134177

ABSTRACT

Lithium ion batteries (LIBs) are encouraging electrochemical devices with remarkable properties including a high energy/power density, fast charging capability, and low self-discharge rate. Further increase in energy density as well as safe usage is needed for next-generation LIBs in electric transportation vehicles. Solid-state electrolytes (SSEs) are very promising for high-performance LIBs since they enable improved safety along with increased energy density compared to flammable liquid organic electrolytes. However, utilizing SSEs with a Li metal anode is very challenging due to the possibility of undesired side reactions and the formation of an unstable solid-electrolyte interphase. Therefore, it is critical to enhance the stability of SSEs against the Li anode. One feasible approach is to form a thin and conductive interlayer between the Li anode and solid-state electrolyte. Atomic layer deposition (ALD) is a unique technique for conformal coating of complex 3D structures with finely controlled film thickness (at the atomic scale). ALD coating on the surface of SSEs can be adopted for engineering solid-electrolyte interfaces with desired attributes and improved stability. In this review paper, we have discussed recent progress in implementing the ALD technique for depositing thin layers on various SSE configurations including lithium phosphorus oxynitride (LiPON), garnets, oxides, perovskites, sulphides, Li3BO3-Li2CO3 (LBCO), and sodium super ionic conductors (NASICON). We have also highlighted the major areas for future research and development in the field. We believe that this review will be very helpful for directing future research on implementing ALD for synthesizing stable and high-performance SSEs with an engineered solid-electrolyte interface for next-generation electrochemical devices (e.g., Li-ion batteries, supercapacitors, and flow batteries).

15.
Polymers (Basel) ; 12(4)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244627

ABSTRACT

We demonstrate a facile and effective method, which is low-cost and easy to scale up, to fabricate holey graphene nanosheets (HGNSs) via ultrafast heating during synthesis. Various heating temperatures are used to modify the material properties of HGNSs. First, we use HGNSs as the electrode active materials for electric double-layer capacitors (EDLCs). A synthesis temperature of 900 °C seems to be optimal, i.e., the conductivity and adhesion of HGNSs reach a compromise. The gravimetric capacitance of this HGNS sample (namely HGNS-900) is 56 F·g-1. However, the volumetric capacitance is low, which hinders its practical application. Secondly, we incorporate activated carbon (AC) into HGNS-900 to make a composite EDLC material. The effect of the AC:HGNS-900 ratio on the capacitance, high-rate performance, and cycling stability are systematically investigated. With a proper amount of HGNS-900, both the electrode gravimetric and volumetric capacitances at high rate charging/discharging are clearly higher than those of plain AC electrodes. The AC/HGNS-900 composite is a promising electrode material for nonaqueous EDLC applications.

16.
Nanomaterials (Basel) ; 10(4)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260230

ABSTRACT

Photoluminescent nanomaterials have immense potential for use in biological systems due to their excellent fluorescent properties and small size. Traditional semiconductor quantum dots are heavy-metal-based and can be highly toxic to living organisms, besides their poor photostability and low biocompatibility. Nano-sized carbon quantum dots and their surface-modified counterparts have shown improved characteristics for imaging purposes. We used 1,3, 6-trinitropyrene (TNP) and polyethylene glycol6000 (PEG6000) in a hydrothermal method to prepare functional polyethylene glycol6000/carbon nanodots (PEG6000/CDs) and analyzed their potential in fluorescent staining of different types of bacteria. Our results demonstrated that PEG6000/CDs stained the cell pole and septa of gram-positive bacteria B. Subtilis and B. thuringiensis but not those of gram-negative bacteria. The optimal concentration of these composite nanodots was approximately 100 ppm and exposure times varied across different bacteria. The PEG6000/CD composite had better photostability and higher resistance to photobleaching than the commercially available FM4-64. They could emit two wavelengths (red and green) when exposed to two different wavelengths. Therefore, they may be applicable as bioimaging molecules. They can also be used for differentiating different types of bacteria owing to their ability to differentially stain gram-positive and gram-negative bacteria.

17.
Nanoscale ; 12(14): 7834-7842, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32222752

ABSTRACT

Nitrogen-doped graphene quantum dots (GQDs) and graphitic carbon nitride (g-C3N4) quantum dots are synthesized via a solid-phase microwave-assisted (SPMA) technique. The resulting GQDs are deposited on graphite felt (GF) and are employed as high-performance electrodes for all-vanadium redox flow batteries (VRFBs). The SPMA method is capable of synthesizing highly oxidized and amidized GQDs using citric acid and urea as the precursor. The as-prepared GQDs contain an ultrahigh O/C (56-61%) and N/C (34-66%) atomic ratio, much higher than the values reported for other carbon-based nano-materials (e.g. oxidized activated carbon, carbon nanotubes, and graphene oxide). Three types of quantum dots, having an average particle size of 2.8-4.2 nm, are homogeneously dispersed onto GF electrodes, forming GQD/GF composite electrodes. Through deposition of GQDs onto the electrode structure, the catalytic activity, equivalent series resistance, durability, and voltage efficiency are improved. The capacity utilization using GQD/GF electrode is substantially enhanced (∼69% increase within 40 cycles). The improved performance is attributed to the synergistic effect of GQDs containing oxygen functionalities (epoxy, phenolic and carboxylic groups) and lattice N atoms (quaternary, pyrrolic and pyridinic N) which result in enhanced wettability and increased electrochemical surface area providing increased reaction sites.

18.
Int J Mol Sci ; 20(21)2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31671904

ABSTRACT

Graphene oxide (GO) composites with various metal nanoparticles (NPs) are attracting increasing interest owing to their broad scope in biomedical applications. Here, microwave-assisted chemical reduction was used to deposit nano-silver and zinc oxide NPs (Ag and ZnO NPs) on the surface of reduced GO (rGO) at the following weight percentages: 5.34% Ag/rGO, 7.49% Ag/rGO, 6.85% ZnO/rGO, 16.45% ZnO/rGO, 3.47/34.91% Ag/ZnO/rGO, and 7.08/15.28% Ag/ZnO/rGO. These materials were tested for antibacterial activity, and 3.47/34.91% Ag/ZnO/rGO and 7.08/15.28% Ag/ZnO/rGO exhibited better antibacterial activity than the other tested materials against the gram-negative bacterium Escherichia coli K12. At 1000 ppm, both these Ag/ZnO/rGO composites had better killing properties against both E. coli K12 and the gram-positive bacterium Staphylococcus aureus SA113 than Ag/rGO and ZnO/rGO did. RedoxSensor flow cytometry showed that 3.47/34.91% Ag/ZnO/rGO and 7.08/15.28% Ag/ZnO/rGO decreased reductase activity and affected membrane integrity in the bacteria. At 100 ppm, these two composites affected membrane integrity more in E. coli, while 7.08/15.28% Ag/ZnO/rGO considerably decreased reductase activity in S. aureus. Thus, the 3.47/34.91% and 7.08%/15.28% Ag/ZnO/rGO nanocomposites can be applied not only as antibacterial agents but also in a variety of biomedical materials such as sensors, photothermal therapy, drug delivery, and catalysis, in the future.


Subject(s)
Anti-Bacterial Agents/pharmacology , Graphite/pharmacology , Metal Nanoparticles/chemistry , Silver/pharmacology , Zinc Oxide/pharmacology , Anti-Bacterial Agents/chemistry , Drug Delivery Systems/methods , Escherichia coli/drug effects , Graphite/chemistry , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Microwaves , Nanocomposites/chemistry , Particle Size , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , X-Ray Diffraction , Zinc Oxide/chemistry
19.
Nanoscale ; 11(35): 16553-16561, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31455955

ABSTRACT

Highly fluorescent N-doped graphene quantum dots (NGQDs) and graphitic carbon nitride quantum dots (CNQDs, g-C3N4) were synthesized using a solid-phase microwave-assisted (SPMA) technique. The SPMA method, based on the pyrolysis of citric acid and urea with different recipes, is capable of producing quantum dots with coexisting NGQDs and CNQDs at 280 °C within only five minutes. The photoluminescence (PL) emissions from NGQD and CNQDs are strongly dependent on the excitation wavelength and the solvent type, i.e., water, ethanol, and N-methyl pyrrolidinone. The unique attribute of the quantum dots, possessing a multiple chromophoric band-gap structure, originates from the presence of g-C3N4, defect-related emissive traps, and grain boundaries. Thus, an appropriate excitation wavelength induces a conjugated π electron system to fulfill the most probable absorption band, resulting in wavelength-dependent emissions including ultraviolet, visible and infrared light. The quantum yield of the NGQD and CNQD samples can reach as high as 68.1%. Accordingly, a light-emitting device using the combination of the NGQD and CNQD powder embedded polymeric film can emit white-like light with ultra-high power-conversion efficiency.

20.
Nanoscale ; 11(16): 7833-7838, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30964134

ABSTRACT

Precise control of the oxidation level on graphene oxide (GO) sheets is still a big challenge. This work demonstrates a linear control of the surface oxidation level on GO sheets via an atomic layer reduction (ALR) technique at 100 and 150 °C. The oxygen stripping rate during ALR cycling was assessed at different operating temperatures: 0.055% per cycle (150 °C) and 0.028% per cycle (100 °C). It was shown that the optical band gap and the electrical conductivity can be linearly tuned by the ALR cycle number for graphene-like materials. This unique capability was not feasible when employing conventional synthesis routes (e.g. thermal or chemical reduction) since these techniques only provide a stepwise control over the oxidation/reduction processes. The in situ oxidation level on GO materials can be accurately controlled through the ALR/atomic layer oxidation (ALO) cycle. Accordingly, the ALR/ALO cycle offers excellent reversibility for adjusting the chemical composition of graphene-like materials and tuning the optical and electronic properties of such nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...