Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37765670

ABSTRACT

In recent years, the implementation of wearable and biocompatible tactile sensing elements with sufficient response into healthcare, medical detection, and electronic skin/amputee prosthetics has been an intriguing but challenging quest. Here, we propose a flexible all-polyurethane capacitive tactile sensor that utilizes a salt crystal-templated porous elastomeric framework filling with silver nanowire as the composite dielectric material, sandwiched by a set of polyurethane films covering silver nanowire networks as electrodes. With the aids of these cubic air pores and conducting nanowires, the fabricated capacitive tactile sensor provides pronounced enhancement of both sensor compressibility and effective relative dielectric permittivity across a broad pressure regime (from a few Pa to tens of thousands of Pa). The fabricated silver nanowire-porous polyurethane sensor presents a sensitivity improvement of up to 4-60 times as compared to a flat polyurethane device. An ultrasmall external stimulus as light as 3 mg, equivalent to an applied pressure of ∼0.3 Pa, can also be clearly recognized. Our all-polyurethane capacitive tactile sensor based on a porous dielectric framework hybrid with conducting nanowire reveals versatile potential applications in physiological activity detection, arterial pulse monitoring, and spatial pressure distribution, paving the way for wearable electronics and artificial skin.

2.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055273

ABSTRACT

We propose a flexible capacitive pressure sensor that utilizes porous polydimethylsiloxane elastomer with zinc oxide nanowire as nanocomposite dielectric layer via a simple porogen-assisted process. With the incorporation of nanowires into the porous elastomer, our capacitive pressure sensor is not only highly responsive to subtle stimuli but vigorously so to gentle touch and verbal stimulation from 0 to 50 kPa. The fabricated zinc oxide nanowire-porous polydimethylsiloxane sensor exhibits superior sensitivity of 0.717 kPa-1, 0.360 kPa-1, and 0.200 kPa-1 at the pressure regimes of 0-50 Pa, 50-1000 Pa, and 1000-3000 Pa, respectively, presenting an approximate enhancement by 21-100 times when compared to that of a flat polydimethylsiloxane device. The nanocomposite dielectric layer also reveals an ultralow detection limit of 1.0 Pa, good stability, and durability after 4000 loading-unloading cycles, making it capable of perception of various human motions, such as finger bending, calligraphy writing, throat vibration, and airflow blowing. A proof-of-concept trial in hydrostatic water pressure sensing has been demonstrated with the proposed sensors, which can detect tiny changes in water pressure and may be helpful for underwater sensing research. This work brings out the efficacy of constructing wearable capacitive pressure sensors based on a porous dielectric hybrid with stress-sensitive nanostructures, providing wide prospective applications in wearable electronics, health monitoring, and smart artificial robotics/prosthetics.

3.
Nanoscale ; 13(12): 6076-6086, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33687415

ABSTRACT

We demonstrate polymeric piezocapacitive pressure sensors based on a novel composite dielectric film of poly(dimethylsiloxane) elastomeric silicone and zinc oxide tetrapod. With an appropriate loading of zinc oxide tetrapods, composite piezocapacitive pressure sensors show a 75-fold enhancement of pressure sensitivity over pristine devices, achieving a marked value as high as 2.55 kPa-1. The limit of detection was estimated to be about 10 mg, corresponding to a subtle stimulus of only 1.0 Pa. Besides, versatile functionalities such as detection of finger bending/straightening, calligraphy writing, and air flow blowing have been investigated. It is expected that the proposed piezocapacitive pressure sensors incorporating stress-sensitive additives of zinc oxide nanostructures may provide a promising means for potential applications in ultrasensitive wearable, healthcare systems and human-machine interfaces.

4.
ACS Appl Mater Interfaces ; 7(1): 45-50, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25494204

ABSTRACT

Polymer capacitive pressure sensors based on a dielectric composite layer of zinc oxide nanowire and poly(methyl methacrylate) show pressure sensitivity in the range of 2.63 × 10(-3) to 9.95 × 10(-3) cm(2) gf(-1). This represents an increase of capacitance change by as much as a factor of 23 over pristine polymer devices. An ultralight load of only 10 mg (corresponding to an applied pressure of ∼0.01 gf cm(-2)) can be clearly recognized, demonstrating remarkable characteristics of these nanowire-polymer capacitive pressure sensors. In addition, optical transmittance of the dielectric composite layer is approximately 90% in the visible wavelength region. Their low processing temperature, transparency, and flexible dielectric film makes them a highly promising means for flexible touching and pressure-sensing applications.


Subject(s)
Nanowires/chemistry , Polymers/chemistry , Polymethyl Methacrylate/chemistry , Zinc Oxide/chemistry , Electric Capacitance , Polymers/chemical synthesis , Pressure
5.
ACS Nano ; 6(4): 2992-3006, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22449258

ABSTRACT

We demonstrate inkjet printing as a viable method for large-area fabrication of graphene devices. We produce a graphene-based ink by liquid phase exfoliation of graphite in N-methylpyrrolidone. We use it to print thin-film transistors, with mobilities up to ∼95 cm(2) V(-1) s(-1), as well as transparent and conductive patterns, with ∼80% transmittance and ∼30 kΩ/□ sheet resistance. This paves the way to all-printed, flexible, and transparent graphene devices on arbitrary substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...