Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0303692, 2024.
Article in English | MEDLINE | ID: mdl-38875291

ABSTRACT

Electrical signaling plays a crucial role in the cellular response to tissue injury in wound healing and an external electric field (EF) may expedite the healing process. Here, we have developed a standalone, wearable, and programmable electronic device to administer a well-controlled exogenous EF, aiming to accelerate wound healing in an in vivo mouse model to provide pre-clinical evidence. We monitored the healing process by assessing the re-epithelization rate and the ratio of M1/M2 macrophage phenotypes through histology staining. Following three days of treatment, the M1/M2 macrophage ratio decreased by 30.6% and the re-epithelization in the EF-treated wounds trended towards a non-statically significant 24.2% increase compared to the control. These findings provide point towards the effectiveness of the device in shortening the inflammatory phase by promoting reparative macrophages over inflammatory macrophages, and in speeding up re-epithelialization. Our wearable device supports the rationale for the application of programmed EFs for wound management in vivo and provides an exciting basis for further development of our technology based on the modulation of macrophages and inflammation to better wound healing.


Subject(s)
Disease Models, Animal , Inflammation , Macrophages , Wound Healing , Animals , Mice , Inflammation/therapy , Inflammation/pathology , Male , Wearable Electronic Devices
2.
Wound Repair Regen ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794912

ABSTRACT

Wound healing is a complex physiological process that requires precise control and modulation of many parameters. Therapeutic ion and biomolecule delivery has the capability to regulate the wound healing process beneficially. However, achieving controlled delivery through a compact device with the ability to deliver multiple therapeutic species can be a challenge. Bioelectronic devices have emerged as a promising approach for therapeutic delivery. Here, we present a pro-reparative bioelectronic device designed to deliver ions and biomolecules for wound healing applications. The device incorporates ion pumps for the targeted delivery of H+ and zolmitriptan to the wound site. In vivo studies using a mouse model further validated the device's potential for modulating the wound environment via H+ delivery that decreased M1/M2 macrophage ratios. Overall, this bioelectronic ion pump demonstrates potential for accelerating wound healing via targeted and controlled delivery of therapeutic agents to wounds. Continued optimization and development of this device could not only lead to significant advancements in tissue repair and wound healing strategies but also reveal new physiological information about the dynamic wound environment.

3.
Sci Rep ; 13(1): 14766, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679425

ABSTRACT

The development of wearable bioelectronic systems is a promising approach for optimal delivery of therapeutic treatments. These systems can provide continuous delivery of ions, charged biomolecules, and an electric field for various medical applications. However, rapid prototyping of wearable bioelectronic systems for controlled delivery of specific treatments with a scalable fabrication process is challenging. We present a wearable bioelectronic system comprised of a polydimethylsiloxane (PDMS) device cast in customizable 3D printed molds and a printed circuit board (PCB), which employs commercially available engineering components and tools throughout design and fabrication. The system, featuring solution-filled reservoirs, embedded electrodes, and hydrogel-filled capillary tubing, is assembled modularly. The PDMS and PCB both contain matching through-holes designed to hold metallic contact posts coated with silver epoxy, allowing for mechanical and electrical integration. This assembly scheme allows us to interchange subsystem components, such as various PCB designs and reservoir solutions. We present three PCB designs: a wired version and two battery-powered versions with and without onboard memory. The wired design uses an external voltage controller for device actuation. The battery-powered PCB design uses a microcontroller unit to enable pre-programmed applied voltages and deep sleep mode to prolong battery run time. Finally, the battery-powered PCB with onboard memory is developed to record delivered currents, which enables us to verify treatment dose delivered. To demonstrate the functionality of the platform, the devices are used to deliver H[Formula: see text] in vivo using mouse models and fluoxetine ex vivo using a simulated wound environment. Immunohistochemistry staining shows an improvement of 35.86% in the M1/M2 ratio of H[Formula: see text]-treated wounds compared with control wounds, indicating the potential of the platform to improve wound healing.


Subject(s)
Capillary Tubing , Wound Healing , Animals , Mice , Dimethylpolysiloxanes , Disease Models, Animal
4.
J Chromatogr A ; 1629: 461484, 2020 Oct 11.
Article in English | MEDLINE | ID: mdl-32889297

ABSTRACT

Isomers, holding similar chemical and physical properties, are difficult to separate especially by utilizing a microfabricated gas chromatography system due to limited column lengths mainly imposed by low-pressure (<20 kPa) micropump capability. In this paper, we demonstrated the separation of a pair of structural isomers, isopentane and pentane, in a micro-scale gas chromatography system with a circulatory loop of two 25-cm micro open tubular columns, while operating under a minimal pressure requirement of <10 kPa. The developed micro circulatory gas chromatography (MCGC) system achieved an effective column length of 12.5 meters by circulating the isomer gases for 25 cycles, the longest micro open tubular column length ever reported by any microfabricated GC systems yet.


Subject(s)
Chromatography, Gas/methods , Pentanes/isolation & purification , Isomerism , Microtechnology
5.
Lab Chip ; 16(6): 1002-12, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26911622

ABSTRACT

This paper reports the characterization of a miniaturized circulatory column system that is capable of magnifying the effective column length by forming a circulatory loop with chip-scale columns, thus ultimately achieving high-efficiency target separation. The circulatory column system is composed of a tandem of 25 cm microcolumns and six valves for fluidic flow control in order to enable chromatographic separation in circulatory motions while requiring only 5.5 kPa of pressure, which current micropumps are currently capable of supplying. The developed column system (1) successfully demonstrated 16 times elongation of a virtual column length up to 800 cm by only utilizing two 25 cm microcolumns, which is the longest column length reported by any MEMS-scale functioning GC column, (2) achieved a high theoretical plate number of 68,696 with pentane circulating after 15.5 circulatory cycles, which corresponds to the plate number per length-pressure of 1611 plate m(-1) kPa(-1), the highest record reported yet, and (3) demonstrated successful separation of target molecules during circulation by utilizing a pentane/hexane mixture, resulting in magnification of the two corresponding peaks via circulation.

6.
Biotechnol Lett ; 31(4): 557-63, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19066733

ABSTRACT

D-amino acid oxidase from Rhodosporidium toruloides was immobilized onto glutaraldehyde-activated magnetic nanoparticles. Approximately four enzyme molecules were attached to one magnetic nanoparticle when the weight ratio of the enzyme to the support was 0.12. After immobilization, the T(m) was increased from 45 degrees C of the free form to 55 degrees C. In the presence of 20 mM H2O2, the immobilized form retained 93% of its activity after 5 h while the free form was completely inactivated after 3.5 h.


Subject(s)
Basidiomycota/enzymology , D-Amino-Acid Oxidase/chemistry , Enzymes, Immobilized , Fungal Proteins/chemistry , Magnetics , Nanoparticles , D-Amino-Acid Oxidase/metabolism , Enzyme Stability , Fungal Proteins/metabolism , Hydrogen Peroxide/metabolism , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...