Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antiviral Res ; 220: 105752, 2023 12.
Article in English | MEDLINE | ID: mdl-37949318

ABSTRACT

The outbreak of SARS-CoV-2 infections had led to the COVID-19 pandemic which has a significant impact on global public health and the economy. The spike (S) protein of SARS-CoV-2 contains the receptor binding domain (RBD) which binds to human angiotensin-converting enzyme 2 receptor. Numerous RBD-based vaccines have been developed and recently focused on the induction of neutralizing antibodies against the immune evasive Omicron BQ.1.1 and XBB.1.5 subvariants. In this preclinical study, we reported the use of a direct fusion of the type IIb Escherichia coli heat-labile enterotoxin A subunit with SARS CoV-2 RBD protein (RBD-LTA) as an intranasal vaccine candidate. The results showed that intranasal immunization with the RBD-LTA fusion protein in BALB/c mice elicited potent neutralizing antibodies against the Wuhan-Hu-1 and several SARS-CoV-2 variants as well as the production of IgA antibodies in bronchoalveolar lavage fluids (BALFs). Furthermore, the heterologous RBD representing the same strains used in the bivalent mRNA vaccine were used as a second-dose RBD-LTA/RBD protein booster after bivalent mRNA vaccination. The results showed that the neutralizing antibody titers elicited by the intranasal bivalent RBD-LTA/RBD protein booster were similar to the intramuscular bivalent mRNA booster, but the RBD-specific IgA titers in sera and BALFs significantly increased. Overall, this preclinical study suggests that the RBD-LTA fusion protein could be a promising candidate as a mucosal booster COVID-19 vaccine.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Mice , Humans , Spike Glycoprotein, Coronavirus/genetics , Escherichia coli , COVID-19 Vaccines , Hot Temperature , Pandemics , COVID-19/prevention & control , SARS-CoV-2/genetics , Enterotoxins/genetics , Vaccination , Immunization , Antibodies, Neutralizing , RNA, Messenger , Antibodies, Viral
2.
ChemSusChem ; 13(10): 2719-2725, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32128983

ABSTRACT

Li-air batteries are limited to lab-scale research owing to the uninterrupted formation of discharge products. In the case of Li-CO2 batteries, the increase in overpotential caused by Li2 CO3 formation results in cell death. In this study, Cu2 O crystals having three different types of shapes (i.e., cubic, octahedral, and rhombic) were synthesized to compare their catalytic activity toward CO2 reactions. The full-cycle and long-term stability test revealed that rhombohedral Cu2 O facilitates Li2 CO3 decomposition more efficiently than that of cubic and octahedral Cu2 O. The cycle was extended to investigate the photocatalytic activity of the rhombic Cu2 O by illuminating the cell. The repeated cycles to 1 h showed a maximum overpotential of 1.5 V, which is 0.5 V lower than that of the cell without illumination. A postmortem analysis of the cell after dividing the cycles into segments demonstrated interesting results concerning the role of light and Cu2 O during the cell cycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...