Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
J Med Chem ; 67(13): 10906-10927, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38913493

ABSTRACT

A series of bifunctional compounds have been discovered for their dual functionality as MER/AXL inhibitors and immune modulators. The furanopyrimidine scaffold, renowned for its suitability in kinase inhibitor discovery, offers at least three distinct pharmacophore access points. Insights from molecular modeling studies guided hit-to-lead optimization, which revealed that the 1,3-diketone side chain hybridized with furanopyrimidine scaffold that respectively combined amino-type substituent and 1H-pyrazol-4-yl substituent on the top and bottom of the aryl regions to produce 22 and 33, exhibiting potent antitumor activities in various syngeneic and xenograft models. More importantly, 33 demonstrated remarkable immune-modulating activity by upregulating the expression of total T-cells, cytotoxic CD8+ T-cells, and helper CD4+ T-cells in the spleen. These findings underscored the bifunctional capabilities of 33 (BPR5K230) with excellent oral bioavailability (F = 54.6%), inhibiting both MER and AXL while modulating the tumor microenvironment and highlighting its diverse applicability for further studies to advance its therapeutic potential.


Subject(s)
Antineoplastic Agents , Axl Receptor Tyrosine Kinase , Protein Kinase Inhibitors , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Tumor Microenvironment , c-Mer Tyrosine Kinase , Animals , Tumor Microenvironment/drug effects , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , c-Mer Tyrosine Kinase/antagonists & inhibitors , c-Mer Tyrosine Kinase/metabolism , Mice , Cell Line, Tumor , Structure-Activity Relationship , Drug Discovery , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Female , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Cell Proliferation/drug effects
2.
J Biomed Sci ; 31(1): 46, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725007

ABSTRACT

BACKGROUND: Cathepsin S (CTSS) is a cysteine protease that played diverse roles in immunity, tumor metastasis, aging and other pathological alterations. At the cellular level, increased CTSS levels have been associated with the secretion of pro-inflammatory cytokines and disrupted the homeostasis of Ca2+ flux. Once CTSS was suppressed, elevated levels of anti-inflammatory cytokines and changes of Ca2+ influx were observed. These findings have inspired us to explore the potential role of CTSS on cognitive functions. METHODS: We conducted classic Y-maze and Barnes Maze tests to assess the spatial and working memory of Ctss-/- mice, Ctss+/+ mice and Ctss+/+ mice injected with the CTSS inhibitor (RJW-58). Ex vivo analyses including long-term potentiation (LTP), Golgi staining, immunofluorescence staining of sectioned whole brain tissues obtained from experimental animals were conducted. Furthermore, molecular studies were carried out using cultured HT-22 cell line and primary cortical neurons that treated with RJW-58 to comprehensively assess the gene and protein expressions. RESULTS: Our findings reported that targeting cathepsin S (CTSS) yields improvements in cognitive function, enhancing both working and spatial memory in behavior models. Ex vivo studies showed elevated levels of long-term potentiation levels and increased synaptic complexity. Microarray analysis demonstrated that brain-derived neurotrophic factor (BDNF) was upregulated when CTSS was knocked down by using siRNA. Moreover, the pharmacological blockade of the CTSS enzymatic activity promoted BDNF expression in a dose- and time-dependent manner. Notably, the inhibition of CTSS was associated with increased neurogenesis in the murine dentate gyrus. These results suggested a promising role of CTSS modulation in cognitive enhancement and neurogenesis. CONCLUSION: Our findings suggest a critical role of CTSS in the regulation of cognitive function by modulating the Ca2+ influx, leading to enhanced activation of the BDNF/TrkB axis. Our study may provide a novel strategy for improving cognitive function by targeting CTSS.


Subject(s)
Brain-Derived Neurotrophic Factor , Cathepsins , Cognition , Animals , Male , Mice , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Cathepsins/drug effects , Cathepsins/genetics , Cathepsins/metabolism , Cognition/drug effects , Cognition/physiology , Mice, Knockout , Receptor, trkB/metabolism , Receptor, trkB/genetics , Trans-Activators/genetics , Trans-Activators/metabolism
3.
Org Lett ; 25(43): 7757-7762, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37738398

ABSTRACT

An acyl radical reaction of bicyclo[2.2.2]octenone to yield either rearranged or cyclized isotwistane products is described. The influence of ring strain on the reaction was demonstrated by alternating the sizes of the fused ring in the starting material. DFT calculations showed that the reaction is under thermodynamic control and proceeds via a 5-exo-trig cyclization intermediate, which undergoes either hydrogen-atom transfer (HAT) to give a cyclized product or rearrangement via a twistane intermediate to give a rearranged product.

4.
Eur J Med Chem ; 258: 115608, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37437352

ABSTRACT

The compelling demand of a consummate analgesic medication without addiction is rising due to the clinical mistreatment. Additionally, the series of severe untoward effects usually deterred the utilization while coping with serious pain. As a possible turning point, we revealed that compound 14 is a dual agonist of mu opioid receptor (MOR) and nociceptin-orphanin FQ opioid peptide (NOP) receptor in this study. More importantly, compound 14 achieves pain relieving at very small doses, meanwhile, reduces several unwanted side effects such as constipation, reward, tolerance and withdrawal effects. Here, we evaluated the antinociception and side effects of this novel compound from wild type and humanized mice to further develop a safer prescription analgesic drug.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Receptors, Opioid, mu , Mice , Animals , Receptors, Opioid, mu/agonists , Receptors, Opioid/agonists , Nociceptin Receptor , Opioid Peptides/pharmacology , Opioid Peptides/therapeutic use , Analgesics, Opioid/adverse effects , Pain/chemically induced , Pain/drug therapy , Analgesics/adverse effects , Nociceptin
5.
J Med Chem ; 66(4): 2566-2588, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36749735

ABSTRACT

The development of orally bioavailable, furanopyrimidine-based double-mutant (L858R/T790M) EGFR inhibitors is described. First, selectivity for mutant EGFR was accomplished by replacing the (S)-2-phenylglycinol moiety of 12 with either an ethanol or an alkyl substituent. Then, the cellular potency and physicochemical properties were optimized through insights from molecular modeling studies by implanting various solubilizing groups in phenyl rings A and B. Optimized lead 52 shows 8-fold selective inhibition of H1975 (EGFRL858R/T790M overexpressing) cancer cells over A431 (EGFRWT overexpressing) cancer cells; western blot analysis further confirmed EGFR mutant-selective target modulation inside the cancer cells by 52. Notably, 52 displayed in vivo antitumor effects in two different mouse xenograft models (BaF3 transfected with mutant EGFR and H1975 tumors) with TGI = 74.9 and 97.5% after oral administration (F = 27%), respectively. With an extraordinary kinome selectivity (S(10) score of 0.017), 52 undergoes detailed preclinical development.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Protein Kinase Inhibitors , Pyrimidines , Animals , Humans , Mice , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Pyrimidines/administration & dosage , Pyrimidines/pharmacology
6.
J Biomed Sci ; 29(1): 68, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36096815

ABSTRACT

The novel coronavirus disease (COVID-19) pandemic remains a global public health crisis, presenting a broad range of challenges. To help address some of the main problems, the scientific community has designed vaccines, diagnostic tools and therapeutics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The rapid pace of technology development, especially with regard to vaccines, represents a stunning and historic scientific achievement. Nevertheless, many challenges remain to be overcome, such as improving vaccine and drug treatment efficacies for emergent mutant strains of SARS-CoV-2. Outbreaks of more infectious variants continue to diminish the utility of available vaccines and drugs. Thus, the effectiveness of vaccines and drugs against the most current variants is a primary consideration in the continual analyses of clinical data that supports updated regulatory decisions. The first two vaccines granted Emergency Use Authorizations (EUAs), BNT162b2 and mRNA-1273, still show more than 60% protection efficacy against the most widespread current SARS-CoV-2 variant, Omicron. This variant carries more than 30 mutations in the spike protein, which has largely abrogated the neutralizing effects of therapeutic antibodies. Fortunately, some neutralizing antibodies and antiviral COVID-19 drugs treatments have shown continued clinical benefits. In this review, we provide a framework for understanding the ongoing development efforts for different types of vaccines and therapeutics, including small molecule and antibody drugs. The ripple effects of newly emergent variants, including updates to vaccines and drug repurposing efforts, are summarized. In addition, we summarize the clinical trials supporting the development and distribution of vaccines, small molecule drugs, and therapeutic antibodies with broad-spectrum activity against SARS-CoV-2 strains.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Viral Vaccines , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , BNT162 Vaccine , COVID-19/prevention & control , Humans , SARS-CoV-2 , Viral Vaccines/therapeutic use
7.
J Biomed Sci ; 29(1): 29, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35534851

ABSTRACT

BACKGROUND: Castration-resistant prostate cancer (CRPC) with sustained androgen receptor (AR) signaling remains a critical clinical challenge, despite androgen depletion therapy. The Jumonji C-containing histone lysine demethylase family 4 (KDM4) members, KDM4A‒KDM4C, serve as critical coactivators of AR to promote tumor growth in prostate cancer and are candidate therapeutic targets to overcome AR mutations/alterations-mediated resistance in CRPC. METHODS: In this study, using a structure-based approach, we identified a natural product, myricetin, able to block the demethylation of histone 3 lysine 9 trimethylation by KDM4 members and evaluated its effects on CRPC. A structure-based screening was employed to search for a natural product that inhibited KDM4B. Inhibition kinetics of myricetin was determined. The cytotoxic effect of myricetin on various prostate cancer cells was evaluated. The combined effect of myricetin with enzalutamide, a second-generation AR inhibitor toward C4-2B, a CRPC cell line, was assessed. To improve bioavailability, myricetin encapsulated by poly lactic-co-glycolic acid (PLGA), the US food and drug administration (FDA)-approved material as drug carriers, was synthesized and its antitumor activity alone or with enzalutamide was evaluated using in vivo C4-2B xenografts. RESULTS: Myricetin was identified as a potent α-ketoglutarate-type inhibitor that blocks the demethylation activity by KDM4s and significantly reduced the proliferation of both androgen-dependent (LNCaP) and androgen-independent CRPC (CWR22Rv1 and C4-2B). A synergistic cytotoxic effect toward C4-2B was detected for the combination of myricetin and enzalutamide. PLGA-myricetin, enzalutamide, and the combined treatment showed significantly greater antitumor activity than that of the control group in the C4-2B xenograft model. Tumor growth was significantly lower for the combination treatment than for enzalutamide or myricetin treatment alone. CONCLUSIONS: These results suggest that myricetin is a pan-KDM4 inhibitor and exhibited potent cell cytotoxicity toward CRPC cells. Importantly, the combination of PLGA-encapsulated myricetin with enzalutamide is potentially effective for CRPC.


Subject(s)
Antineoplastic Agents , Biological Products , Flavonoids , Prostatic Neoplasms, Castration-Resistant , Androgens/pharmacology , Androgens/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Flavonoids/pharmacology , Glycolates , Glycols/pharmacology , Glycols/therapeutic use , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/pharmacology , Male , Nitriles/pharmacology , Nitriles/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/therapeutic use
8.
Int J Mol Sci ; 23(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35409412

ABSTRACT

Entry inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed to control the outbreak of coronavirus disease 2019 (COVID-19). This study developed a robust and straightforward assay that detected the molecular interaction between the receptor-binding domain (RBD) of viral spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor in just 10 min. A drug library of 1068 approved compounds was used to screen for SARS-CoV2 entry inhibition, and 9 active drugs were identified as specific pseudovirus entry inhibitors. A plaque reduction neutralization test using authentic SARS-CoV-2 virus in Vero E6 cells confirmed that 2 of these drugs (Etravirine and Dolutegravir) significantly inhibited the infection of SARS-CoV-2. With molecular docking, we showed that both Etravirine and Dolutegravir are preferentially bound to primary ACE2-interacting residues on the RBD domain, implying that these two drug blocks may prohibit the viral attachment of SARS-CoV-2. We compared the neutralizing activities of these entry inhibitors against different pseudoviruses carrying spike proteins from alpha, beta, gamma, and delta variants. Both Etravirine and Dolutegravir showed similar neutralizing activities against different variants, with EC50 values between 4.5 to 5.8 nM for Etravirine and 10.2 to 22.9 nM for Dolutegravir. These data implied that Etravirine and Dolutegravir may serve as general spike inhibitors against dominant viral variants of SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Humans , Molecular Docking Simulation , RNA, Viral , Spike Glycoprotein, Coronavirus/metabolism
9.
J Biomed Sci ; 29(1): 5, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35062934

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the sixth most common type of cancer and has a high mortality rate worldwide. Sorafenib is the only systemic treatment demonstrating a statistically significant but modest overall survival benefit. We previously have identified the aurora kinases (AURKs) and FMS-like tyrosine kinase 3 (FLT3) multikinase inhibitor DBPR114 exhibiting broad spectrum anti-tumor effects in both leukemia and solid tumors. The purpose of this study was to evaluate the therapeutic potential of DBPR114 in the treatment of advanced HCC. METHODS: Human HCC cell lines with histopathology/genetic background similar to human HCC tumors were used for in vitro and in vivo studies. Human umbilical vein endothelial cells (HUVEC) were used to evaluate the drug effect on endothelial tube formation. Western blotting, immunohistochemical staining, and mRNA sequencing were employed to investigate the mechanisms of drug action. Xenograft models of sorafenib-refractory and sorafenib-acquired resistant HCC were used to evaluate the tumor response to DBPR114. RESULTS: DBPR114 was active against HCC tumor cell proliferation independent of p53 alteration status and tumor grade in vitro. DBPR114-mediated growth inhibition in HCC cells was associated with apoptosis induction, cell cycle arrest, and polyploidy formation. Further analysis indicated that DBPR114 reduced the phosphorylation levels of AURKs and its substrate histone H3. Moreover, the levels of several active-state receptor tyrosine kinases were downregulated by DBPR114, verifying the mechanisms of DBPR114 action as a multikinase inhibitor in HCC cells. DBPR114 also exhibited anti-angiogenic effect, as demonstrated by inhibiting tumor formation in HUVEC cells. In vivo, DBPR114 induced statistically significant tumor growth inhibition compared with the vehicle control in multiple HCC tumor xenograft models. Histologic analysis revealed that the DBPR114 treatment reduced cell proliferation, and induced apoptotic cell death and multinucleated cell formation. Consistent with the histological findings, gene expression analysis revealed that DBPR114-modulated genes were mostly related to the G2/M checkpoint and mitotic spindle assembly. DBPR114 was efficacious against sorafenib-intrinsic and -acquired resistant HCC tumors. Notably, DBPR114 significantly delayed posttreatment tumor regrowth and prolonged survival compared with the regorafenib group. CONCLUSION: Our results indicated that targeting AURK signaling could be a new effective molecular-targeted agent in the treatment of patients with HCC.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Endothelial Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Sorafenib/pharmacology , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/genetics
10.
J Med Chem ; 64(19): 14477-14497, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34606263

ABSTRACT

Colony-stimulating factor-1 receptor (CSF1R) is implicated in tumor-associated macrophage (TAM) repolarization and has emerged as a promising target for cancer immunotherapy. Herein, we describe the discovery of orally active and selective CSF1R inhibitors by property-driven optimization of BPR1K871 (9), our clinical multitargeting kinase inhibitor. Molecular docking revealed an additional nonclassical hydrogen-bonding (NCHB) interaction between the unique 7-aminoquinazoline scaffold and the CSF1R hinge region, contributing to CSF1R potency enhancement. Structural studies of CSF1R and Aurora kinase B (AURB) demonstrated the differences in their back pockets, which inspired the use of a chain extension strategy to diminish the AURA/B activities. A lead compound BPR1R024 (12) exhibited potent CSF1R activity (IC50 = 0.53 nM) and specifically inhibited protumor M2-like macrophage survival with a minimal effect on antitumor M1-like macrophage growth. In vivo, oral administration of 12 mesylate delayed the MC38 murine colon tumor growth and reversed the immunosuppressive tumor microenvironment with the increased M1/M2 ratio.


Subject(s)
Antineoplastic Agents/pharmacology , Colonic Neoplasms/drug therapy , Drug Discovery , Immunomodulating Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Line, Tumor , Colonic Neoplasms/pathology , Immunomodulating Agents/administration & dosage , Immunomodulating Agents/chemistry , Male , Mice , Mice, Inbred C57BL , Neoplasms, Experimental , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Rats, Sprague-Dawley , Structure-Activity Relationship
11.
Nanomaterials (Basel) ; 11(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34361230

ABSTRACT

Integrative medicine comprising a tumor-associated antigen vaccine and chemotherapeutic regimens has provided new insights into cancer therapy. In this study, the AB-type diblock copolymers poly(ethylene glycol)-polylactide (PEG-PLA) were subjected to the dispersion of poorly water-soluble molecules in aqueous solutions. The physicochemical behavior of the chemotherapeutic agent DBPR114 in the PEG-PLA-polymeric aqueous solution was investigated by dynamic light scattering (DLS) technology. In vitro cell culture indicated that replacing the organic solvent DMSO with PEG-PLA polymeric micelles could maintain the anti-proliferative effect of DBPR114 on leukemia cell lines. A murine tumor-associated antigen vaccine model was established in tumor-bearing mice to determine the effectiveness of these formulas in inducing tumor regression. The results demonstrated that the therapeutic treatments effectively reinforced each other via co-delivery of antitumor drug/antigen agents to synergistically integrate the efficacy of cancer therapy. Our findings support the potential use of polymeric micellar systems for aqueous solubilization and expansion of antitumor activity intrinsic to DBPR114 and tumor-associated antigen therapy.

12.
Eur J Med Chem ; 224: 113673, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34303872

ABSTRACT

Rare oncogenic NTRK gene fusions result in uncontrolled TRK signaling leading to various adult and pediatric solid tumors. Based on the architecture of our multi-targeted clinical candidate BPR1K871 (10), we designed and synthesized a series of quinazoline compounds as selective and orally bioavailable type II TRK inhibitors. Property-driven and lead optimization strategies informed by structure-activity relationship studies led to the identification of 39, which showed higher (about 15-fold) selectivity for TRKA over AURA and AURB, as well as potent cellular activity (IC50 = 56.4 nM) against the KM12 human colorectal cancer cell line. 39 also displayed good AUC and oral bioavailability (F = 27%), excellent in vivo efficacy (TGI = 64%) in a KM12 xenograft model, and broad-spectrum anti-TRK mutant potency (IC50 = 3.74-151.4 nM), especially in the double-mutant TRKA enzymatic assays. 39 is therefore proposed for further development as a next-generation, selective, and orally-administered type II TRK inhibitor.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , Receptor, trkA/antagonists & inhibitors , Administration, Oral , Animals , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/metabolism , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/metabolism , Binding Sites , Cell Line, Tumor , Half-Life , Humans , Mice , Mice, Nude , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/pathology , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/therapeutic use , Rats , Receptor, trkA/metabolism , Structure-Activity Relationship , Transplantation, Heterologous
13.
ACS Omega ; 6(9): 6100-6111, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33718701

ABSTRACT

G9a protein methyltransferase is a potential epigenetic drug target in different cancers and other disease conditions overexpressing the enzyme. G9a is responsible for the H3K9 dimethylation mark, which epigenetically regulates gene expression. Arg8 and Lys9 of the H3 substrate peptide are the two crucial residues for substrate-specific recognition and methylation. Several substrate competitive inhibitors are reported for the potent inhibition of G9a by incorporating lysine mimic groups in the inhibitor design. In this study, we explored the concept of arginine mimic strategy. The hydrophobic segment of the reported inhibitors BIX-01294 and UNC0638 was replaced by a guanidine moiety (side-chain moiety of arginine). The newly substituted guanidine moieties of the inhibitors were positioned similar to the Arg8 of the substrate peptide in molecular docking. Additionally, improved reactivity of the guanidine-substituted inhibitors was observed in density functional theory studies. Molecular dynamics, molecular mechanics Poisson-Boltzmann surface area binding free energy, linear interaction energy, and potential mean force calculated from steered molecular dynamics simulations of the newly designed analogues show enhanced conformational stability and improved H-bond potential and binding affinity toward the target G9a. Moreover, the presence of both lysine and arginine mimics together shows a drastic increase in the binding affinity of the inhibitor towards G9a. Hence, we propose incorporating a guanidine group to imitate the substrate arginine's side chain in the inhibitor design to improve the potency of G9a inhibitors.

14.
Mar Drugs ; 19(2)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572535

ABSTRACT

Briareum stechei is proven to be a rich source of 3,8-cyclized cembranoids (briarane) with a bicyclo[8.4.0] carbon core. In the present study, four previously unreported briaranes, briarenols W-Z (1-4), along with solenolide A (5), briarenolide M (6), briaexcavatolide F (7), and brianolide (8), were isolated and characterized through spectroscopic analysis, and the absolute configuration of 8 was corroborated by a single-crystal x-ray diffraction analysis. Briaranes 2 and 5 were found to induce significant inflammatory activity in lipopolysaccharide (LPS)-induced RAW 264.7 mouse macrophage cells by enhancing the expression of the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins.


Subject(s)
Anthozoa/chemistry , Diterpenes/isolation & purification , Animals , Chlorine , Diterpenes/chemistry , Diterpenes/pharmacology , Magnetic Resonance Spectroscopy , Mice , RAW 264.7 Cells
15.
J Org Chem ; 86(2): 1955-1963, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33400878

ABSTRACT

In this work, we report a novel and simple one-pot synthesis of substituted dibenzo[b,f]oxepines under transition-metal-free conditions. This cascade process involves nucleophilic aromatic substitution followed by Knoevanagel condensation, as evidenced by the isolated reaction intermediates. We have also achieved the synthesis of anticancer bauhinoxepin C in 7 steps with 5.1% overall yield using this synthetic approach.


Subject(s)
Transition Elements , Molecular Structure
16.
Chem Biol Drug Des ; 97(1): 51-66, 2021 01.
Article in English | MEDLINE | ID: mdl-32633857

ABSTRACT

P-glycoprotein (P-gp)/MDR-1 plays a major role in the development of multidrug resistance (MDR) by pumping the chemotherapeutic drugs out of the cancer cells and reducing their efficacy. A number of P-gp inhibitors were reported to reverse the MDR when co-administered with chemotherapeutic drugs. Unfortunately, none has approved for clinical use due to toxicity issues. Some of the P-gp inhibitors tested in the clinics are reported to have cross-reactivity with CYP450 drug-metabolizing enzymes, resulting in unpredictable pharmacokinetics and toxicity of co-administered chemotherapeutic drugs. In this study, two piperine analogs (3 and 4) having lower cross-reactivity with CYP3A4 drug-metabolizing enzyme are identified as P-glycoprotein (P-gp) inhibitors through computational design, followed by synthesis and testing in MDR cancer cell lines over-expressing P-gp (KB ChR 8-5, SW480-VCR, and HCT-15). Both the analogs significantly increased the vincristine efficacy in MDR cancer cell lines at low micromole concentrations. Specifically, 3 caused complete reversal of vincristine resistance in KB ChR 8-5 cells and found to act as competitive inhibitor of P-gp as well as potentiated the vincristine-induced NF-KB-mediated apoptosis. Therefore, 3 ((2E,4E)-1-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-5-(4-hydroxy-3-methoxyphenyl)penta-2,4-dien-1-one) can serve as a potential P-gp inhibitor for in vivo investigations, to reverse multidrug resistance in cancer.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Alkaloids/chemistry , Antineoplastic Agents/pharmacology , Benzodioxoles/chemistry , Drug Design , Drug Resistance, Neoplasm/drug effects , Piperidines/chemistry , Polyunsaturated Alkamides/chemistry , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Alkaloids/metabolism , Alkaloids/pharmacology , Antineoplastic Agents/metabolism , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Benzodioxoles/metabolism , Benzodioxoles/pharmacology , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Cytochrome P-450 CYP3A/chemistry , Cytochrome P-450 CYP3A/metabolism , Drug Evaluation, Preclinical , Humans , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism , NF-kappa B/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Piperidines/metabolism , Piperidines/pharmacology , Polyunsaturated Alkamides/metabolism , Polyunsaturated Alkamides/pharmacology , Vincristine/pharmacology , Vincristine/therapeutic use
17.
Acta Pharm Sin B ; 10(7): 1309-1320, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32874830

ABSTRACT

Hepsin, a transmembrane serine protease abundant in renal endothelial cells, is a promising therapeutic target against several cancers, particularly prostate cancer. It is involved in the release and polymerization of uromodulin in the urine, which plays a role in kidney stone formation. In this work, we design new potential hepsin inhibitors for high activity, improved specificity towards hepsin, and promising ADMET properties. The ligands were developed in silico through a novel hierarchical pipeline. This pipeline explicitly accounts for off-target binding to the related serine proteases matriptase and HGFA (human hepatocyte growth factor activator). We completed the pipeline incorporating ADMET properties of the candidate inhibitors into custom multi-objective optimization functions. The ligands designed show excellent prospects for targeting hepsin via the blood stream and the urine and thus enable key experimental studies. The computational pipeline proposed is remarkably cost-efficient and can be easily adapted for designing inhibitors against new drug targets.

18.
Bioorg Chem ; 98: 103689, 2020 05.
Article in English | MEDLINE | ID: mdl-32171993

ABSTRACT

In an effort to develop new cancer therapeutics, we have reported clinical candidate BPR1K871 (1) as a potentanticancercompound in MOLM-13 and MV4-11 leukemia models, as well as in colorectal and pancreatic animal models. As BPR1K871 lacks oral bioavailability, we continued searching for orally bioavailable analogs through drug-like property optimization. We optimized both the physicochemical properties (PCP) as well as in vitro rat liver microsomal stability of 1, with concomitant monitoring of aurora kinase enzyme inhibition as well as cellular anti-proliferative activity in HCT-116 cell line. Structural modification at the 6- and 7-position of quinazoline core of 1 led to the identification of 34 as an orally bioavailable (F% = 54) multi-kinase inhibitor, which exhibits potent anti-proliferative activity against various cancer cell lines. Quinazoline 34 is selected as a promising oral lead candidate for further preclinical evaluation.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinases/antagonists & inhibitors , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Aurora Kinases/metabolism , Biological Availability , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Male , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Quinazolines/administration & dosage , Quinazolines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
19.
J Biomol Struct Dyn ; 38(12): 3563-3577, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31526250

ABSTRACT

Among the plant constituents of Clerodendrum colebrookianum Walp., acteoside, martinoside, and osmanthuside ß6 interact with ROCK, a drug target for cancer. In this study, aglycone fragments of these plant constituents (caffeic acid, ferulic acid, and p-coumaric acid) along with the homopiperazine ring of fasudil (standard ROCK inhibitor) were used to design hybrid molecules. The designed molecules interact with the key hinge region residue Met156/Met157 of ROCK I/II in a stable manner according to our docking and molecular dynamics simulations. These compounds were synthesized and tested in vitro in SW480, MDA-MB-231, and A-549 cancer cell lines. The most promising compound was chemically optimized to obtain a thiourea analog, 6a (IC50 = 25 µM), which has >3-fold higher antiproliferative activity than fasudil (IC50 = 87 µM) in SW480 cells. Treatment with this molecule also inhibits the migration of colon cancer cells and induces cell apoptosis. Further, SPR experiments suggests that the binding affinity of 6a with ROCK I protein is better than that of fasudil. Hence, the drug-like natural product analog 6a constitutes a highly promising new anticancer lead.Communicated by Ramaswamy H. Sarma.


Subject(s)
Biological Products , Apoptosis , Biological Products/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation
20.
Cancer Lett ; 472: 97-107, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31875524

ABSTRACT

Many Aurora-A inhibitors have been developed for cancer therapy; however, the specificity and safety of Aurora-A inhibitors remain uncertain. The Aurora-A mRNA yields nine different 5'-UTR isoforms, which result from mRNA alternative splicing. Interestingly, we found that the exon 2-containing Aurora-A mRNA isoforms are predominantly expressed in cancer cell lines as well as human colorectal cancer tissues, making the Aurora-A mRNA exon 2 a promising treatment target in Aurora-A-overexpressing cancers. In this study, a selective siRNA, siRNA-2, which targets Aurora-A mRNA exon 2, was designed to translationally inhibit the expression of Aurora-A in cancer cells but not normal cells; locked nucleic acid (LNA)-modified siRNA-2 showed improved efficacy in inhibiting Aurora-A mRNA translation and tumor growth. Xenograft animal models combined with noninvasion in vivo imaging system (IVIS) analysis further confirmed the anticancer effect of LNA-siRNA-2 with improved efficiency and safety and reduced side effects. Mice orthotopically injected with colorectal cancer cells, LNA-siRNA-2 treatment not only inhibited the tumor growth but also blocked liver and lung metastasis. The results of our study suggest that LNA-siRNA-2 has the potential to be a novel therapeutic agent for cancer treatment.


Subject(s)
Aurora Kinase A/genetics , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Protein Isoforms/genetics , 5' Untranslated Regions/drug effects , Alternative Splicing/genetics , Animals , Aurora Kinase A/antagonists & inhibitors , Colorectal Neoplasms/pathology , HCT116 Cells , Humans , Mice , Neoplasm Metastasis , Oligonucleotides/pharmacology , Protein Isoforms/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Small Interfering/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...