Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 68(2): 171-7, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19026525

ABSTRACT

The lifetime of artificial joints is mainly determined by their biotribological properties. Synovial fluid which consists of various biological molecules acts as the lubricant. Among the compositions of synovial fluid, albumin is the most abundant protein. Under high load and low sliding speed articulation of artificial joint, it is believed the lubricants form protective layers on the sliding surfaces under the boundary lubrication mechanism. The protective molecular layer keeps two surfaces from direct collision and thus decreases the possibility of wear damage. However, the lubricating ability of the molecular layer may vary due to the conformational change of albumin in the process. In this study, we investigated the influence of albumin conformation on the adsorption behaviors on the articulating surfaces and discuss the relationship between adsorbed albumin and its tribological behaviors. We performed the friction tests to study the effects of albumin unfolding on the frictional behaviors. The novelty of this research is to further carry out molecular dynamics simulation, and protein adsorption experiments to investigate the mechanisms of the albumin-mediated boundary lubrication of arthroplastic materials. It was observed that the thermal processes induce the loss of secondary structure of albumin. The compactness of the unfolded structure leads to a higher adsorption rate onto the articulating material surface and results in the increase of friction coefficient.


Subject(s)
Albumins/chemistry , Computer Simulation , Lubrication , Models, Molecular , Adsorption , Arthroplasty , Circular Dichroism , Friction , Humans , Polyethylene/chemistry , Protein Conformation , Solutions , Surface Properties , Temperature
2.
J Biomol Struct Dyn ; 25(2): 135-44, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17718592

ABSTRACT

Human cystatin C variant (L68Q), one of the amyloidgenic proteins, has been shown to form dimeric structure spontaneously via domain swapping and easily cause amyloid deposits in the brains of patients suffering from Alzheimer's disease or hereditary cystatin C amyloid angiopathy. The monomeric L68Q and wild-type (wt) HCCs share similar structural feature consisting of a core with a five-stranded anti-parallel beta-sheet (beta-region) wrapped around a central helix. In this study, various molecular dynamics simulations were conducted to investigate the conformational fluctuations of the monomeric L68Q and wt HCCs at various combinations of temperature (300 and 500K) and pH (2 and 7) to gain insights into the domain swapping mechanism. The results show that elevated temperature accelerates the disruption of the hydrophobic core and acidic condition promotes the destruction of three salt bridges between beta2 and beta3 in both HCCs. The results also indicate that the interior hydrophobic core of the L68Q variant is relatively unstable, leading to domain swapping more readily comparing to wt HCC under conditions favoring this process. However, these two monomeric HCCs adopt the same mechanism of domain swapping as follows: (i) first, the interior hydrophobic core is disrupted; (ii) subsequently, the central helix departs from the beta-region; (iii) then, the beta2-L1-beta3 hairpin structure unfolds following the so-called "zip-up" mechanism; and (iv) finally, the open form HCC is generated.


Subject(s)
Computer Simulation , Cystatins , Protein Structure, Quaternary , Protein Structure, Tertiary , Amino Acid Sequence , Cystatin C , Cystatins/chemistry , Cystatins/genetics , Humans , Models, Molecular , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL