Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Ann Plast Surg ; 92(1S Suppl 1): S2-S11, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38285989

ABSTRACT

BACKGROUND: The skin is the largest organ in the human body and serves as a barrier for protective, immune, and sensory functions. Continuous and permanent exposure to the external environment results in different levels of skin and extracellular matrix damage. During skin wound healing, the use of good dressings and addition of growth factors to the wound site can effectively modulate the rate of wound healing. A dressing containing bioactive substances can absorb wound exudates and reduce adhesion between the wound and dressing, whereas growth factors, cytokines, and signaling factors can promote cell motility and proliferation. AIM AND OBJECTIVES: We prepared a functional wound dressing by combining platelet-rich plasma (PRP) and zwitterionic hydrogels. Functional wound dressings are rich in various naturally occurring growth factors that can effectively promote the healing process in various types of tissues and absorb wound exudates to reduce adhesion between wounds and dressings. Furthermore, PRP-incorporated zwitterionic hydrogels have been used to repair full-thickness wounds in Sprague-Dawley rats with diabetes (DM SD). MATERIALS AND METHODS: Fibroblasts and keratinocytes were cultured with PRP, zwitterionic hydrogels, and PRP-incorporated zwitterionic hydrogels to assess cell proliferation and specific gene expression. Furthermore, PRP-incorporated zwitterionic hydrogels were used to repair full-thickness skin defects in DM SD rats. RESULTS: The swelling ratio of hydrogel, hydrogel + PRP1000 (108 platelets/mL), and hydrogel + PRP1000 (109 platelets/mL) groups were similar (~07.71% ± 1.396%, 700.17% ± 1.901%, 687.48% ± 4.661%, respectively) at 144 hours. The tensile strength and Young modulus of the hydrogel and hydrogel + PRP10000 groups were not significantly different. High concentrations of PRP (approximately 108 and 109 platelets/mL) effectively promoted the proliferation of fibroblasts and keratinocytes. The zwitterionic hydrogels were not cytotoxic to any cell type. High PRP concentration-incorporated zwitterionic hydrogels increased the rate of cell proliferation and significantly increased the expression of characteristic genes such as collagen, fibronectin, involucrin, and keratin. Subsequently, zwitterionic hydrogels with high PRP concentrations were used to repair full-thickness skin defects in DM SD rats, and a wound healing rate of more than 90% was recorded on day 12. CONCLUSIONS: PRP contains high concentrations of growth factors that promote cell viability, enhance specific gene expression, and have a high medical value in cell therapy. Zwitterionic hydrogels have a 3-dimensional interconnected microporous structure and can resist cell adhesion without causing cytotoxicity. Platelet-rich plasma-incorporated zwitterionic hydrogels further enhance the cellular properties and provide an effective therapeutic option for wound healing.


Subject(s)
Diabetes Mellitus , Platelet-Rich Plasma , Rats , Humans , Animals , Wound Healing , Hydrogels , Rats, Sprague-Dawley , Platelet-Rich Plasma/chemistry , Platelet-Rich Plasma/metabolism , Diabetes Mellitus/metabolism , Tissue Adhesions
2.
Ann Plast Surg ; 88(1s Suppl 1): S13-S21, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35225844

ABSTRACT

ABSTRACT: The adipose-derived stromal vascular fraction (SVF) is considered to be an attractive source of stem cells in cell therapy. Besides stem cells, it also contains functional cells, such as macrophages, precursor cells, somatic stem cells, and pericytes. Collagenase digestion is the most frequently used method to isolate SVF, but it is time-consuming and costly and has some problems, such as infectious agents and immune reactions. In this research, we compared the yield, cell population ratios, and cell viability when isolating SVF by the ultrasonic physics (U-SVF) method and traditional enzymatic method (E-SVF). Then, we isolated exosomes from U-SVF and E-SVF, respectively, and cocultured them with fibroblasts to investigate the potential of applying this cell secretion in wound repair. The results showed that there was no significant difference between the ultrasonic method and enzymatic method in terms of cell viability, cell numbers, or the expression of CD markers of stem cells. However, exosome analysis identified a greater number and smaller size of exosome particles obtained by U-SVF. In terms of cell proliferation efficiency, although the proliferation efficiency of U-SVF was lower than that of E-SVF. Trilineage differentiation experiments revealed that both E-SVF and U-SVF had good differentiation ability, owing to high stem cell content. Finally, E-SVF and U-SVF exosomes were cocultured with fibroblasts. The efficiency of fibroblast migration increased in the SVF exosome treated groups, and the expression of related genes (integrin α5ß1) was slightly upregulated; however, the expression of FAK, AKT, ERK, and RhoA was significantly upregulated at 24 hours. From the abovementioned experiments, we found that there was no significant difference in stem cell-related characteristics between SVF isolated by ultrasonic cavitation and SVF isolated by the enzymatic method. In addition, exosomes secreted by SVF may have excellent therapeutic effect on skin injuries, which provides a new viewpoint and therapeutic strategy for soft tissue repair.


Subject(s)
Adipose Tissue , Stromal Cells , Stem Cells , Stromal Vascular Fraction , Wound Healing
3.
Ann Plast Surg ; 86(2S Suppl 1): S3-S12, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33438949

ABSTRACT

INTRODUCTION: Astragaloside IV (AS-IV) is a natural herb extract and a popular compound used in traditional Chinese medicine because of its effect on multiple biological processes, such as promotion of cell proliferation, improvement in cardiopulmonary and vascular function, and promotion of angiogenesis around wounds, leading to accelerated wound healing. Vascular regeneration primarily results from the differentiation of endothelial progenitor cells (EPCs). Biomedical acceleration of angiogenesis and differentiation of EPCs around the wound remain challenging. MATERIALS AND METHODS: In this study, we treated human umbilical cord blood-derived EPCs with AS-IV and cultured them on 2-dimensional (tissue culture polystyrene) and 3-dimensional culture plates (3DPs). These cultured cells were then combined with human blood plasma gel and applied on the skin of nude mice in an attempt to repair full-thickness skin defects. RESULTS: The results show that using 3DP culture could increase vascular-related gene expression in EPCs. Furthermore, 12.5 µg/mL AS-IV-treaded EPCs were combined with plasma gels (P-3DP-EPC12.5) and showed enhanced vascular-related protein expression levels after 3 days of culture. Finally, P-3DP-EPC12.5s were used to repair full-thickness skin defects in nude mice, and we could register a wound healing rate greater than 90% by day 14. CONCLUSIONS: Based on these results, we concluded that we have developed a potential therapeutic approach for wound healing using plasma gel containing 3-dimensional surface-cultured AS-IV-treated EPCs.


Subject(s)
Endothelial Progenitor Cells , Animals , Mice , Mice, Nude , Neovascularization, Physiologic , Saponins , Triterpenes , Wound Healing
4.
J Mater Chem B ; 8(33): 7390-7402, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32657299

ABSTRACT

Conventional tough hydrogels offer enhanced mechanical properties for load-bearing implants; however, their application is still hindered by a lack of biocompatibility. In this study, we demonstrate a new methodology for developing biocompatible double network (DN) hydrogels by using a responsive amphoteric polymer as a first framework. Tough DN hydrogels were formed by penetrating zwitterionic poly(sulfobetaine acrylamide) (PSBAA) into a swollen poly(lysine acrylamide) (PLysAA) network in an acidic or alkaline solution, and polymerizing under UV irradiation. The DN hydrogels were able to become zwitterionic entirely under physiological conditions, and possess excellent mechanical strength, comparable to conventional DN hydrogels with permanently charged polyelectrolyte frameworks. Additionally, in vitro studies including biofouling, cytotoxicity and hemolysis were conducted to show the superior biocompatibility of the complete zwitterionic DN hydrogels. After the circulation of human blood in tubular DN hydrogels, the zwitterionic DN gels displayed negligible thrombus formation. Furthermore, PLysAA/PSBAA hydrogels were implanted subcutaneously, showing excellent resistance against inflammatory response and long-term capsule formation. This work has presented a new strategy for synthesizing a biocompatible tough DN hydrogel to effectively mitigate the foreign body reaction to render great benefit for the development of biomedical implants.


Subject(s)
Foreign-Body Reaction/chemically induced , Hydrogels/adverse effects , Mechanical Phenomena , Thrombosis/chemically induced , Animals , Hydrogen-Ion Concentration , Male , Materials Testing , Polylysine/chemistry , Rats , Rats, Wistar
5.
Ann Plast Surg ; 84(1S Suppl 1): S116-S122, 2020 01.
Article in English | MEDLINE | ID: mdl-31833898

ABSTRACT

In this study, a novel antiadhesion membrane made of polycaprolactone, gelatin, and chitosan was fabricated using the electrospinning technique. A series of polycaprolactone/gelatin/chitosan (PGC) electrospun membranes with different amounts of chitosan (0%, 0.5%, 1%, and 2% in weight percentage) was synthesized. The physicochemical properties and biocompatibility of the fabricated membranes were examined and compared with the aim to select an effective antiadhesion membrane. Scanning electron microscopy showed that these 4 electrospun membranes had similar fiber diameter and pore area, with no statistical differences between them. Furthermore, the contact angle decreased with increased chitosan content, indicating that chitosan may contribute to increased hydrophilic properties. The in vitro degradation test revealed that the higher chitosan content corresponded to a lower degradation rate in PGC membranes within 7 days. All PGC membranes exhibited similar cell proliferation; however, cell proliferation was lower than tissue culture polystyrene (P < 0.05). To compare antiadhesion ability, the adhesion between the cecum and abdominal wall was created in a rat model. Assessment after implantation of electrospun membranes revealed that PGCs with higher chitosan content (PGC2) had better antiadhesion effects, as evaluated by an adhesion score at day 14 postsurgery. Thus, PGC2 was effective in reducing the formation of tissue adhesion. Therefore, PGC electrospun membrane may provide a potential peritoneal antiadhesion barrier for clinical use.


Subject(s)
Chitosan , Animals , Biocompatible Materials , Gelatin , Membranes, Artificial , Polyesters , Rats , Tissue Scaffolds
6.
Ann Plast Surg ; 82(1S Suppl 1): S119-S125, 2019 01.
Article in English | MEDLINE | ID: mdl-30516561

ABSTRACT

The pigment melanin is produced by melanocytes, is primarily responsible for skin color, and protects it against ultraviolet rays that can cause the destruction of genetic material within the keratinocytes. To elucidate the mechanisms of many diseases associated with melanocytes, such as melanoma and albinism, or burns with uneven pigment distribution, the disease model needs to be established first. In this study, we aimed to construct the melanocyte model from patients in a short period.Sandai virus vector containing 4 stemness genes (Oct4, Sox2, Klf4, c-Myc) was transfected into human adipose-derived stem cells to produce induced pluripotent stem cells (iPSCs). Immunofluorescence staining was used to confirm the expression of specific proteins for iPSCs, including Tra-1-60, Tra-1-81, Oct-4, Sox-2, and Nango. polymerase chain reaction results also showed that specific genes of iPSCs with the ability to cause the differentiation of cells into the 3 germ layers were expressed. In our in vivo experiments, iPSCs were subcutaneously injected into nude mice to induce teratoma formation for 2 months. The morphology of the 3 germ layers was confirmed by hematoxylin and eosin staining. Furthermore, melanocytes were purified by serial induction medium, and their presence was confirmed by flow cytometry and the expression of different markers for melanocytes.


Subject(s)
Cell Differentiation/physiology , Induced Pluripotent Stem Cells/cytology , Melanocytes/cytology , Teratoma/pathology , Adipocytes/cytology , Adipocytes/physiology , Animals , Biopsy, Needle , Cell Culture Techniques/methods , Cells, Cultured , China , Disease Models, Animal , Flow Cytometry , Humans , Immunohistochemistry , Induced Pluripotent Stem Cells/physiology , Kruppel-Like Factor 4 , Melanocytes/physiology , Mice , Mice, Inbred BALB C , Mice, Nude , Polymerase Chain Reaction/methods , Random Allocation , Teratoma/therapy
7.
Cell Transplant ; 27(10): 1535-1547, 2018 10.
Article in English | MEDLINE | ID: mdl-30203684

ABSTRACT

Skin substitutes with existing vascularization are in great demand for the repair of full-thickness skin defects. In the present study, we hypothesized that a pre-vascularized skin substitute can potentially promote wound healing. Novel three-dimensional (3D) skin substitutes were prepared by seeding a mixture of human endothelial progenitor cells (EPCs) and fibroblasts into a human plasma/calcium chloride formed gel scaffold, and seeding keratinocytes onto the surface of the plasma gel. The capacity of the EPCs to differentiate into a vascular-like tubular structure was evaluated using immunohistochemistry analysis and WST-8 assay. Experimental studies in mouse full-thickness skin wound models showed that the pre-vascularized gel scaffold significantly accelerated wound healing 7 days after surgery, and resembled normal skin structures after 14 days post-surgery. Histological analysis revealed that pre-vascularized gel scaffolds were well integrated in the host skin, resulting in the vascularization of both the epidermis and dermis in the wound area. Moreover, mechanical strength analysis demonstrated that the healed wound following the implantation of the pre-vascularized gel scaffolds exhibited good tensile strength. Taken together, this novel pre-vascularized human plasma gel scaffold has great potential in skin tissue engineering.


Subject(s)
Endothelial Progenitor Cells/cytology , Fibroblasts/cytology , Gels/chemistry , Keratinocytes/cytology , Plasma/chemistry , Skin, Artificial , Tissue Scaffolds/chemistry , Animals , Cells, Cultured , Humans , Mice, Inbred BALB C , Mice, Nude , Neovascularization, Physiologic , Skin/blood supply , Skin/cytology , Tensile Strength , Tissue Engineering/methods , Wound Healing
8.
PeerJ ; 6: e4815, 2018.
Article in English | MEDLINE | ID: mdl-29844968

ABSTRACT

BACKGROUND: To treat skin color disorders, such as vitiligo or burns, melanocytes are transplanted for tissue regeneration. However, melanocyte distribution in the human body varies with age and location, making it difficult to select the optimal donor skin to achieve a desired color match. Determining the correlations with the desired skin color measurement based on CIELAB color, epidermal melanocyte numbers, and melanin content of individual melanocytes is critical for clinical application. METHOD: Fifteen foreskin samples from Asian young adults were analyzed for skin color, melanocyte ratio (melanocyte proportion in the epidermis), and melanin concentration. Furthermore, an equation was developed based on CIELAB color with melanocyte ratio, melanin concentration, and the product of melanocyte ratio and melanin concentration. The equation was validated by seeding different ratios of keratinocytes and melanocytes in tissue-engineered skin substitutes, and the degree of fitness in expected skin color was confirmed. RESULTS: Linear regression analysis revealed a significant strong negative correlation (r =  - 0.847, R2 = 0.717) between CIELAB L* value and the product of the epidermal melanocyte ratio and cell-based melanin concentration. Furthermore, the results showed that an optimal skin color match was achieved by the formula. DISCUSSION: We found that L* value was correlated with the value obtained from multiplying the epidermal melanocyte ratio (R) and melanin content (M) and that this correlation was more significant than either L* vs M or L* vs R. This suggests that more accurate prediction of skin color can be achieved by considering both R and M. Therefore, precise skin color match in treating vitiligo or burn patients would be potentially achievable based on extensive collection of skin data from people of Asian descent.

9.
Ann Plast Surg ; 80(2S Suppl 1): S66-S69, 2018 02.
Article in English | MEDLINE | ID: mdl-29369904

ABSTRACT

Platelet-rich plasma (PRP) is a kind of plasma that is rich in platelets after processing. It includes various growth factors and cytokines, which speed up the process of wound healing and hemostasis. The PRP solution used in this study is diluted from lyophilized PRP powder, which decreased the possibility of contamination, facilitated the storage, and prolonged the storage life. From in vitro fibroblast proliferation testing, the numbers of PRP supplement were performed for 1, 4, and 7 times by continuous replacement of culture medium each day. Four times of lyophilized PRP supplement was selected for clinical study due to sufficient promotion of fibroblast proliferation. Next, 27 patients of deep second-degree burn wound were included in this study. Patients were assigned to two groups: PRP group (n = 15) and control group (n = 12). A concentration of 1.0 × 10 platelets/cm (wound area) according to wound size was sprayed on the wound evenly. Function was mainly assessed by the percentage of wound closure and bacteria picking out rate in 2 and 3 weeks. The wound closure at 3 weeks showed a significant difference in PRP group (P < 0.05). The healing rate of PRP group reached nearly 80% and made a breakthrough of 90% in 3 weeks, showing a significant difference compared with the control group (P < 0.05). Lyophilized PRP can be considered as an effective treatment to increase healing rate in patients with deep second-degree burn injury.


Subject(s)
Burns/pathology , Burns/therapy , Occlusive Dressings , Platelet-Rich Plasma , Wound Healing/physiology , Body Surface Area , Cell Proliferation/drug effects , Double-Blind Method , Female , Fibroblasts/cytology , Fibroblasts/physiology , Humans , Injury Severity Score , Male , Powders/therapeutic use , Prognosis , Prospective Studies , Treatment Outcome
10.
Adv Drug Deliv Rev ; 123: 155-164, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29079536

ABSTRACT

Significant skin pigmentation changes occur when patients suffer deep burn injuries. These pigmentation disorders may cause not only cosmetic and psychological issues, but more importantly it increases the risk of skin cancer or photoaging. Severe burns significantly effect on the process of repigmentation as the pigmentation is tightly regulated by cell proliferation and differentiation of melanocytes and melanocyte stem cells which are housing in the epidermis and hair follicles of the skin. In the present review, we discuss the possible mechanisms to replenish the melanocytes from the healthy epidermis and hair follicles surrounding burn wounds. The molecular mechanisms of skin repigmentation following healing of burn injuries includes the differentiation of melanoblasts into melanocytes, the distribution and responses of melanocytes and melanocyte stem cells after burn injury, and the regulation of melanin production. We also reviewed advanced therapeutic strategies to treat pigmentation disorders, such as convectional surgery, laser, UV treatment and emerging concepts in skin tissue-engineering.


Subject(s)
Burns/complications , Burns/therapy , Epidermal Cells , Hair Follicle , Pigmentation Disorders/etiology , Pigmentation Disorders/therapy , Skin Pigmentation , Wound Healing , Humans
11.
Biomater Sci ; 5(6): 1072-1081, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28466896

ABSTRACT

Zwitterionic poly(sulfobetaine acrylamide) (pSBAA)-based nanocomposite hydrogels impregnated with germicidal silver nanoparticles (AgNPs) were synthesized and implemented for the treatment of infected chronic wounds. The zwitterionic hydrogels exhibited excellent non-sticky properties and had reinforced mechanical properties by the addition of hectorite nanoclay and poly(ethylene glycol)dimethacrylate as physical and chemical crosslinkers, respectively. In addition, AgNPs were grown within the intercalated clay/polymer structure by in situ free radical reduction, as confirmed by UV-vis spectroscopy and transmission electron microscopy (TEM). The silver-containing pSBAA nanocomposite hydrogels (pSBAA/Ag) exhibited germicidal properties against Gram-positive S. epidermidis and Gram-negative P. aeruginosa. The zwitterionic hydrogels show higher water content than 2-hydroxyethyl methacrylate (pHEMA) hydrogels, owing to the strong hydration via ionic solvation. The negligible cytotoxicity of pSBAA/Ag hydrogels was assessed with human fibroblasts by the MTT assay. Moreover, the zwitterionic hydrogels demonstrated excellent resistance to the adsorption of bovine serum albumin (BSA). To evaluate the feasibility of the hydrogels for clinical application as wound dressings, we created infected diabetic rat models and compared with commercial wound dressings. The results show that pSBAA/Ag hydrogels did not adhere to the newly formed tissue, and were readily removed from the wounds after treatment for 3 days. Moreover, the healing recovery was evaluated by visual observation of infected dorsal wounds on rats with induction of diabetes by streptozotocin. The finding indicates complete healing with the pSBAA/Ag hydrogels after 15 days, faster than other dressings. A histological examination also proved that the zwitterionic hydrogels facilitated epithelialization and collagen distribution in the infected diabetic wounds. Consequently, these novel non-sticky and antimicrobial zwitterionic nanocomposite hydrogels can have high potential for the treatment of infected chronic wounds.


Subject(s)
Acrylic Resins/therapeutic use , Anti-Infective Agents/therapeutic use , Bandages , Metal Nanoparticles/therapeutic use , Nanocomposites/therapeutic use , Silver/therapeutic use , Wound Healing/drug effects , Acrylic Resins/chemistry , Animals , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/chemistry , Male , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Rats , Rats, Wistar , Silver/administration & dosage , Silver/chemistry , Staphylococcal Infections/drug therapy , Staphylococcus epidermidis/drug effects
12.
Ann Plast Surg ; 78(3 Suppl 2): S124-S128, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28195889

ABSTRACT

Massive bleeding is the leading cause of battlefield-related deaths and the second leading cause of deaths in civilian trauma centers. One of the challenges of managing severe wounds is the need to promote hemostasis as quickly as possible, which can be achieved by using hemostatic dressings. In this study, we fabricated 2 kinds of gelatin/polycaprolactone composites with 2 ratios of gelatin/polycaprolactone, 1:1 and 2:1 (GP11 and GP21, respectively). Scanning electron microscopy revealed that the GP11 composite exhibited rougher and more porous structure than the GP21 composite did. Furthermore, both composites showed similar biocompatibility as that of tissue culture polystyrene. Moreover, both GP composites tended to show a gradual decrease in contact angle to zero within 40 minutes. The in vitro blood plasma coagulation assay revealed that the prothrombin time was significantly longer for the GP composites than it was for the Quikclot composite, whereas the activated partial thromboplastin time of the GP11 composite was significantly shorter than that of the gauze. Furthermore, the GP11 had the largest platelet adsorption of all the composites. The in vivo coagulation test showed an obvious shortening of the bleeding time with the Quikclot and GP21 compared with gauze sample. In conclusion, the GP composites showed superior biocompatibility and hemostasis to the gauze and comparable effects with the Qickclot composite. Therefore, the GP composites have the potential for development as biodegradable surgical hemostatic agents.


Subject(s)
Gelatin/pharmacology , Hemostasis, Surgical/methods , Hemostatics/pharmacology , Polyesters/pharmacology , Biocompatible Materials , Blood Platelets/cytology , Cell Adhesion , Fibroblasts , Microscopy, Electron, Scanning , Porosity , Surface Properties , Surgical Sponges
13.
J Mater Chem B ; 4(23): 4206-4215, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-32264623

ABSTRACT

In this study, zwitterionic poly(sulfobetaine acrylamide) (pSBAA) nanocomposite hydrogels were synthesized and implemented as effective chronic wound dressings. The hydrogels exhibited reinforced mechanical properties from added hectorite nanoclay as a physical crosslinker in the polymer chains. Due to the strong interaction with water molecules via ionic solvation, the hydration of the zwitterionic nanocomposite hydrogels was superior to the non-ionic 2-hydroxyethyl methacrylate (pHEMA) hydrogels, which interacts with water molecules via hydrogen bonding. The pSBAA nanocomposite hydrogels cytotoxicity was accessed with NIH-3T3 fibroblast by the MTT assay, the results indicated negligible cytotoxicity after incubation for three days. In addition, the zwitterionic hydrogels displayed evident resistance to adsorption of bovine serum albumin (BSA), NIH-3T3 fibroblast, and bacteria of gram positive S. epidermidis and gram negative P. aeruginosa. The need for antifouling properties in a wound dressing is because commercial dressings removal typically damaging newly formed tissues and colonization of microorganisms occurs on the dressings. For clinical applications as wound dressings, we created normal and diabetic wounds on mice and compared newly developed pSBAA nanocomposite hydrogels with commercial available products. We demonstrated that non-adhesive pSBAA nanocomposite hydrogels enabled ready wound surface removal. Moreover, the wound recovery was conducted with normal and diabetic wounds on rat dorsal by visual observation and showed a complete heal after 10 and 12 days, respectively. Moreover, the histological examination of mice skin confirmed that the zwitterionic hydrogels exhibited thorough re-epithelialization and total formation of new connective tissues in the normal and diabetic wounds after 10 and 12 days, respectively, which was faster than commercial dressings. Consequently, we demonstrated that the pSBAA nanocomposite can serve as an effective dressing for wound management.

14.
Wounds ; 27(8): 224-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26284376

ABSTRACT

INTRODUCTION: Autologous skin transplantation is a common treatment for patients with full-thickness burns. Postoperative wound care is essential for skin graft donor and recipient sites, but traditional wound dressings such as cotton and gauze do not form an effective barrier to bacteria, and patients can feel uncomfortable when replacing dressings. MATERIALS AND METHODS: The goal of this study was to evaluate the use of an antimicrobial spray dressing (JUC Spray Dressing, NMS Technologies Co Ltd, Nanjing, China), with respect to its antimicrobial efficiency and the degree of pain experienced by patients. RESULTS: The authors found the antimicrobial spray can reduce pain during the recovery period, while providing equivalent antibacterial protection to the control treatment (AQUACEL Hydrofiber Wound Dressing, ConvaTec, Bridgewater, NJ) based on skin culture tests. The spray did not adversely affect the wound site recovery. No significant side effects were present during the treatment period. CONCLUSION: This antimicrobial spray could potentially be used in wound dressing applications.


Subject(s)
Anti-Infective Agents/administration & dosage , Occlusive Dressings , Skin Transplantation/adverse effects , Surgical Wound Infection/prevention & control , Wound Healing/drug effects , Adult , Burns/therapy , Case-Control Studies , Female , Humans , Male , Middle Aged , Pain/drug therapy , Treatment Outcome
15.
Wound Repair Regen ; 23(1): 57-64, 2015.
Article in English | MEDLINE | ID: mdl-25421559

ABSTRACT

Adult adipose-derived stem cells (ASCs) are a type of multipotent mesenchymal stem cells (MSCs) with easy availability and serve as a potential cell source for cell-based therapy. Three-dimensional MSC spheroids may be derived from the self-assembly of individual MSCs grown on certain polymer membranes. In this study, we demonstrated that the self-assembled ASC spheroids on chitosan-hyaluronan membranes expressed more cytokine genes (fibroblast growth factor 1, vascular endothelial growth factor, and chemokine [C-C motif] ligand 2) as well as migration-associated genes (chemokine [C-X-C motif] receptor type 4 and matrix metalloprotease 1) compared with ASC dispersed single cells grown on culture dish. To evaluate the in vivo effects of these spheroids, we applied ASC single cells and ASC spheroids in a designed rat skin repair model. Wounds of 15 × 15 mm were created on rat dorsal skin, where ASCs were administered and covered with hyaluronan gel/chitosan sponge to maintain a moist environment. Results showed that skin wounds treated with ASC spheroids had faster wound closure and a significantly higher ratio of angiogenesis. Tracking of fluorescently labeled ASCs showed close localization of ASC spheroids to microvessels, suggesting enhanced angiogenesis through paracrine effects. Based on the in vitro and in vivo results, the self-assembled ASC spheroids may be a promising cellular source for skin tissue engineering and wound regeneration.


Subject(s)
Adipose Tissue/pathology , Biocompatible Materials/pharmacology , Cell- and Tissue-Based Therapy , Chitosan/pharmacology , Hyaluronic Acid/pharmacology , Mesenchymal Stem Cells/metabolism , Skin/pathology , Wound Healing/physiology , Adipose Tissue/cytology , Animals , Cell Adhesion , Cell Proliferation , Intercellular Signaling Peptides and Proteins/metabolism , Rats , Skin/injuries , Spheroids, Cellular/metabolism , Tissue Engineering
16.
Biomater Sci ; 2(11): 1652-1660, 2014 Nov 30.
Article in English | MEDLINE | ID: mdl-32481946

ABSTRACT

Mesenchymal stem cells (MSCs) are widely used for their self-renewal and multipotent abilities, which can be further enhanced by growing MSCs as three-dimensional (3D) cellular spheroids on certain substrates. Although various surfaces have been used to generate 3D MSC spheroids, the answer to whether all these spheroids have similar in vitro and in vivo properties remains unclear. In this study, adipose-derived adult stem cells (ADSCs) were cultured on a non-adherent Petri dish, polyvinyl alcohol, chitosan (CS), or chitosan-hyaluronan (CS-HA) to form 3D spheroids. The expression of the cell adhesion molecule, N-cadherin, was analyzed by qRT-PCR and Western blotting. The functional migration ability was tested using the transwell assay. The capacity for chondral regeneration of various ADSC spheroids was further evaluated in a rabbit model. We demonstrated that ADSC spheroids derived on the CS or CS-HA surface had the greater expression of N-cadherin and better migration ability. The latter was consistent with the higher expression levels of chemokine/receptor SDF-1/CXCR4 for the spheroids derived on CS or CS-HA. Animal studies also revealed significantly better cartilage repair in defects loaded with CS- or CS-HA-derived spheroids. In particular, CS-HA-derived spheroids gave rise to the best regeneration when combined with a 3D printed scaffold. This study suggested that MSC spheroids derived on different surfaces may have distinct in vitro and in vivo properties, which appeared to be associated with the surface-bound calcium as well as the calcium-dependent N-cadherin and CXCR4 signaling. The substrate-dependent properties may eventually lead to different regeneration capacities of various MSC spheroids in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...