Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798678

ABSTRACT

Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Upon classical macrophage activation, oxidative phosphorylation sharply decreases and mitochondria are repurposed to accumulate signals that amplify effector function. However, evidence is conflicting as to whether this collapse in respiration is essential or largely dispensable. Here we systematically examine this question and show that reduced oxidative phosphorylation is not required for pro-inflammatory macrophage activation. Only stimuli that engage both MyD88- and TRIF-linked pathways decrease mitochondrial respiration, and different pro-inflammatory stimuli have varying effects on other bioenergetic parameters. Additionally, pharmacologic and genetic models of electron transport chain inhibition show no direct link between respiration and pro-inflammatory activation. Studies in mouse and human macrophages also reveal accumulation of the signaling metabolites succinate and itaconate can occur independently of characteristic breaks in the TCA cycle. Finally, in vivo activation of peritoneal macrophages further demonstrates that a pro-inflammatory response can be elicited without reductions to oxidative phosphorylation. Taken together, the results suggest the conventional model of mitochondrial reprogramming upon macrophage activation is incomplete.

2.
bioRxiv ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38585887

ABSTRACT

Metabolites and metabolic co-factors can shape the innate immune response, though the pathways by which these molecules adjust inflammation remain incompletely understood. Here we show that the metabolic cofactor Coenzyme A (CoA) enhances IL-4 driven alternative macrophage activation [m(IL-4)] in vitro and in vivo. Unexpectedly, we found that perturbations in intracellular CoA metabolism did not influence m(IL-4) differentiation. Rather, we discovered that exogenous CoA provides a weak TLR4 signal which primes macrophages for increased receptivity to IL-4 signals and resolution of inflammation via MyD88. Mechanistic studies revealed MyD88-linked signals prime for IL-4 responsiveness, in part, by reshaping chromatin accessibility to enhance transcription of IL-4-linked genes. The results identify CoA as a host metabolic co-factor that influences macrophage function through an extrinsic TLR4-dependent mechanism, and suggests that damage-associated molecular patterns (DAMPs) can prime macrophages for alternative activation and resolution of inflammation.

3.
Nature ; 627(8004): 628-635, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383790

ABSTRACT

Interleukin-10 (IL-10) is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types1. Loss of IL-10 signalling results in life-threatening inflammatory bowel disease in humans and mice-however, the exact mechanism by which IL-10 signalling subdues inflammation remains unclear2-5. Here we find that increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10 deficiency. Accordingly, genetic deletion of ceramide synthase 2 (encoded by Cers2), the enzyme responsible for VLC ceramide production, limited the exacerbated inflammatory gene expression programme associated with IL-10 deficiency both in vitro and in vivo. The accumulation of saturated VLC ceramides was regulated by a decrease in metabolic flux through the de novo mono-unsaturated fatty acid synthesis pathway. Restoring mono-unsaturated fatty acid availability to cells deficient in IL-10 signalling limited saturated VLC ceramide production and the associated inflammation. Mechanistically, we find that persistent inflammation mediated by VLC ceramides is largely dependent on sustained activity of REL, an immuno-modulatory transcription factor. Together, these data indicate that an IL-10-driven fatty acid desaturation programme rewires VLC ceramide accumulation and aberrant activation of REL. These studies support the idea that fatty acid homeostasis in innate immune cells serves as a key regulatory node to control pathologic inflammation and suggests that 'metabolic correction' of VLC homeostasis could be an important strategy to normalize dysregulated inflammation caused by the absence of IL-10.


Subject(s)
Inflammation , Interleukin-10 , Sphingolipids , Animals , Humans , Mice , Ceramides/chemistry , Ceramides/metabolism , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/metabolism , Homeostasis , Immunity, Innate , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-10/metabolism , Proto-Oncogene Proteins c-rel , Sphingolipids/metabolism
4.
J Am Soc Mass Spectrom ; 32(11): 2655-2663, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34637296

ABSTRACT

Differential mobility spectrometry (DMS) is highly useful for shotgun lipidomic analysis because it overcomes difficulties in measuring isobaric species within a complex lipid sample and allows for acyl tail characterization of phospholipid species. Despite these advantages, the resulting workflow presents technical challenges, including the need to tune the DMS before every batch to update compensative voltages settings within the method. The Sciex Lipidyzer platform uses a Sciex 5500 QTRAP with a DMS (SelexION), an LC system configured for direction infusion experiments, an extensive set of standards designed for quantitative lipidomics, and a software package (Lipidyzer Workflow Manager) that facilitates the workflow and rapidly analyzes the data. Although the Lipidyzer platform remains very useful for DMS-based shotgun lipidomics, the software is no longer updated for current versions of Analyst and Windows. Furthermore, the software is fixed to a single workflow and cannot take advantage of new lipidomics standards or analyze additional lipid species. To address this multitude of issues, we developed Shotgun Lipidomics Assistant (SLA), a Python-based application that facilitates DMS-based lipidomics workflows. SLA provides the user with flexibility in adding and subtracting lipid and standard MRMs. It can report quantitative lipidomics results from raw data in minutes, comparable to the Lipidyzer software. We show that SLA facilitates an expanded lipidomics analysis that measures over 1450 lipid species across 17 (sub)classes. Lastly, we demonstrate that the SLA performs isotope correction, a feature that was absent from the original software.


Subject(s)
High-Throughput Screening Assays/methods , Lipidomics/methods , Animals , Flow Injection Analysis , Lipids/analysis , Lipids/chemistry , Macrophages , Mice , Software , Workflow
5.
STAR Protoc ; 2(1): 100235, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33364623

ABSTRACT

Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome. For complete details on the use and execution of this protocol, please refer to Hsieh et al. (2020).


Subject(s)
Lipid Metabolism , Lipidomics , Macrophages/metabolism , Mass Spectrometry , Animals , Mice
6.
Nat Immunol ; 21(7): 746-755, 2020 07.
Article in English | MEDLINE | ID: mdl-32514064

ABSTRACT

Plasma membranes of animal cells are enriched for cholesterol. Cholesterol-dependent cytolysins (CDCs) are pore-forming toxins secreted by bacteria that target membrane cholesterol for their effector function. Phagocytes are essential for clearance of CDC-producing bacteria; however, the mechanisms by which these cells evade the deleterious effects of CDCs are largely unknown. Here, we report that interferon (IFN) signals convey resistance to CDC-induced pores on macrophages and neutrophils. We traced IFN-mediated resistance to CDCs to the rapid modulation of a specific pool of cholesterol in the plasma membrane of macrophages without changes to total cholesterol levels. Resistance to CDC-induced pore formation requires the production of the oxysterol 25-hydroxycholesterol (25HC), inhibition of cholesterol synthesis and redistribution of cholesterol to an esterified cholesterol pool. Accordingly, blocking the ability of IFN to reprogram cholesterol metabolism abrogates cellular protection and renders mice more susceptible to CDC-induced tissue damage. These studies illuminate targeted regulation of membrane cholesterol content as a host defense strategy.


Subject(s)
Bacterial Infections/immunology , Bacterial Toxins/immunology , Hydroxycholesterols/metabolism , Interferons/isolation & purification , Phagocytes/immunology , Streptolysins/immunology , Animals , Bacteria/immunology , Bacteria/metabolism , Bacterial Proteins/administration & dosage , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Cell Membrane/metabolism , Cell Membrane Permeability/immunology , Cells, Cultured , Disease Models, Animal , Disease Susceptibility/immunology , Female , Host Microbial Interactions/immunology , Humans , Intravital Microscopy , Male , Mice , Mice, Transgenic , Phagocytes/cytology , Phagocytes/metabolism , Primary Cell Culture , Steroid Hydroxylases/genetics , Steroid Hydroxylases/metabolism , Streptolysins/administration & dosage , Streptolysins/metabolism
7.
Cell Metab ; 32(1): 128-143.e5, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32516576

ABSTRACT

Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary "shotgun" and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. "Shotgun" lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity.


Subject(s)
Lipidomics , Macrophages/metabolism , Toll-Like Receptors/metabolism , Animals , Cell Line , Male , Mice , Mice, Knockout , Mice, Transgenic , Signal Transduction
8.
Cell Rep ; 25(10): 2919-2934.e8, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30517876

ABSTRACT

It is well understood that fatty acids can be synthesized, imported, and modified to meet requisite demands in cells. However, following the movement of fatty acids through the multiplicity of these metabolic steps has remained difficult. To better address this problem, we developed Fatty Acid Source Analysis (FASA), a model that defines the contribution of synthesis, import, and elongation pathways to fatty acid homeostasis in saturated, monounsaturated, and polyunsaturated fatty acid pools. Application of FASA demonstrated that elongation can be a major contributor to cellular fatty acid content and showed that distinct pro-inflammatory stimuli (e.g., Toll-like receptors 2, 3, or 4) specifically reprogram homeostasis of fatty acids by differential utilization of synthetic and elongation pathways in macrophages. In sum, this modeling approach significantly advances our ability to interrogate cellular fatty acid metabolism and provides insight into how cells dynamically reshape their lipidomes in response to metabolic or inflammatory signals.


Subject(s)
Fatty Acids/metabolism , Isotope Labeling/methods , Models, Biological , Animals , Carbon/metabolism , Cell Line , Fatty Acids, Unsaturated/metabolism , Homeostasis , Humans , Inflammation/pathology , Macrophages/metabolism , Male , Mice, Inbred C57BL
9.
Cell Metab ; 28(3): 490-503.e7, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30043752

ABSTRACT

Long-chain fatty acid (LCFA) oxidation has been shown to play an important role in interleukin-4 (IL-4)-mediated macrophage polarization (M(IL-4)). However, many of these conclusions are based on the inhibition of carnitine palmitoyltransferase-1 with high concentrations of etomoxir that far exceed what is required to inhibit enzyme activity (EC90 < 3 µM). We employ genetic and pharmacologic models to demonstrate that LCFA oxidation is largely dispensable for IL-4-driven polarization. Unexpectedly, high concentrations of etomoxir retained the ability to disrupt M(IL-4) polarization in the absence of Cpt1a or Cpt2 expression. Although excess etomoxir inhibits the adenine nucleotide translocase, oxidative phosphorylation is surprisingly dispensable for M(IL-4). Instead, the block in polarization was traced to depletion of intracellular free coenzyme A (CoA), likely resulting from conversion of the pro-drug etomoxir into active etomoxiryl CoA. These studies help explain the effect(s) of excess etomoxir on immune cells and reveal an unappreciated role for CoA metabolism in macrophage polarization.


Subject(s)
Acyl Coenzyme A/physiology , Enzyme Inhibitors/pharmacology , Epoxy Compounds/pharmacology , Homeostasis/drug effects , Macrophages , Mitochondria , 3T3 Cells , A549 Cells , Animals , Carnitine O-Palmitoyltransferase/metabolism , Fatty Acids/metabolism , HCT116 Cells , Hep G2 Cells , Humans , Interleukin-4/metabolism , Liver/metabolism , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Oxidative Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley
10.
Cell Metab ; 28(3): 504-515.e7, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30043753

ABSTRACT

T cell subsets including effector (Teff), regulatory (Treg), and memory (Tmem) cells are characterized by distinct metabolic profiles that influence their differentiation and function. Previous research suggests that engagement of long-chain fatty acid oxidation (LC-FAO) supports Foxp3+ Treg cell and Tmem cell survival. However, evidence for this is mostly based on inhibition of Cpt1a, the rate-limiting enzyme for LC-FAO, with the drug etomoxir. Using genetic models to target Cpt1a specifically in T cells, we dissected the role of LC-FAO in primary, memory, and regulatory T cell responses. Here we show that the ACC2/Cpt1a axis is largely dispensable for Teff, Tmem, or Treg cell formation, and that the effects of etomoxir on T cell differentiation and function are independent of Cpt1a expression. Together our data argue that metabolic pathways other than LC-FAO fuel Tmem or Treg differentiation and suggest alternative mechanisms for the effects of etomoxir that involve mitochondrial respiration.


Subject(s)
Acetyl-CoA Carboxylase/physiology , CD8-Positive T-Lymphocytes/metabolism , Carnitine O-Palmitoyltransferase/physiology , Epoxy Compounds/pharmacology , Fatty Acids/metabolism , Immunologic Memory/drug effects , Mitochondria/metabolism , T-Lymphocytes, Regulatory/drug effects , Acetyl-CoA Carboxylase/genetics , Animals , Carnitine O-Palmitoyltransferase/genetics , Cell Differentiation/drug effects , Cells, Cultured , Child , Child, Preschool , Female , Gene Knockout Techniques , Humans , Lymphocyte Activation/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction/drug effects , Oxidative Phosphorylation/drug effects , T-Lymphocytes, Regulatory/metabolism
11.
PLoS Biol ; 14(3): e1002364, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26938778

ABSTRACT

In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.


Subject(s)
Interferon Regulatory Factor-1/metabolism , Interferons/physiology , MicroRNAs/metabolism , Sterols/biosynthesis , Virus Diseases/immunology , Animals , Mice, Inbred C57BL
12.
PLoS Pathog ; 11(4): e1004737, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25856589

ABSTRACT

Viral engagement with macrophages activates Toll-Like-Receptors (TLRs) and viruses must contend with the ensuing inflammatory responses to successfully complete their replication cycle. To date, known counter-strategies involve the use of viral-encoded proteins that often employ mimicry mechanisms to block or redirect the host response to benefit the virus. Whether viral regulatory DNA sequences provide an opportunistic strategy by which viral enhancer elements functionally mimic innate immune enhancers is unknown. Here we find that host innate immune genes and the prototypical viral enhancer of cytomegalovirus (CMV) have comparable expression kinetics, and positively respond to common TLR agonists. In macrophages but not fibroblasts we show that activation of NFκB at immediate-early times of infection is independent of virion-associated protein, M45. We find upon virus infection or transfection of viral genomic DNA the TLR-agonist treatment results in significant enhancement of the virus transcription-replication cycle. In macrophage time-course infection experiments we demonstrate that TLR-agonist stimulation of the viral enhancer and replication cycle is strictly delimited by a temporal gate with a determined half-maximal time for enhancer-activation of 6 h; after which TLR-activation blocks the viral transcription-replication cycle. By performing a systematic siRNA screen of 149 innate immune regulatory factors we identify not only anticipated anti-viral and pro-viral contributions but also new factors involved in the CMV transcription-replication cycle. We identify a central convergent NFκB-SP1-RXR-IRF axis downstream of TLR-signalling. Activation of the RXR component potentiated direct and indirect TLR-induced activation of CMV transcription-replication cycle; whereas chromatin binding experiments using wild-type and enhancer-deletion virus revealed IRF3 and 5 as new pro-viral host transcription factor interactions with the CMV enhancer in macrophages. In a series of pharmacologic, siRNA and genetic loss-of-function experiments we determined that signalling mediated by the TLR-adaptor protein MyD88 plays a vital role for governing the inflammatory activation of the CMV enhancer in macrophages. Downstream TLR-regulated transcription factor binding motif disruption for NFκB, AP1 and CREB/ATF in the CMV enhancer demonstrated the requirement of these inflammatory signal-regulated elements in driving viral gene expression and growth in cells as well as in primary infection of neonatal mice. Thus, this study shows that the prototypical CMV enhancer, in a restricted time-gated manner, co-opts through DNA regulatory mimicry elements, innate-immune transcription factors to drive viral expression and replication in the face of on-going pro-inflammatory antiviral responses in vitro and in vivo and; suggests an unexpected role for inflammation in promoting acute infection and has important future implications for regulating latency.


Subject(s)
Cytomegalovirus Infections/immunology , Gene Expression Regulation, Viral/immunology , Signal Transduction/immunology , Toll-Like Receptors/immunology , Transcriptional Activation , Viral Proteins/immunology , Acute Disease , Animals , Chromatin Immunoprecipitation , Cytomegalovirus/immunology , Enhancer Elements, Genetic , Gene Knockdown Techniques , Immunoblotting , Inflammation/immunology , Macrophages/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Transcription, Genetic , Transcriptional Activation/immunology , Transfection
13.
Biochem Pharmacol ; 86(1): 56-66, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23583456

ABSTRACT

Cholesterol biosynthesis serves as a central metabolic hub for numerous biological processes in health and disease. A detailed, integrative single-view description of how the cholesterol pathway is structured and how it interacts with other pathway systems is lacking in the existing literature. Here we provide a systematic review of the existing literature and present a detailed pathway diagram that describes the cholesterol biosynthesis pathway (the mevalonate, the Kandutch-Russell and the Bloch pathway) and shunt pathway that leads to 24(S),25-epoxycholesterol synthesis. The diagram has been produced using the Systems Biology Graphical Notation (SBGN) and is available in the SBGN-ML format, a human readable and machine semantically parsable open community file format.


Subject(s)
Cholesterol/biosynthesis , Metabolic Networks and Pathways , Software , Animals , Cholesterol/analogs & derivatives , Computer Graphics , Electronic Data Processing , Humans , Internet , Mammals , Mevalonic Acid/metabolism , Models, Biological , Squalene/metabolism , Systems Biology
14.
Immunity ; 38(1): 106-18, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23273843

ABSTRACT

Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3ß,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.


Subject(s)
Antiviral Agents/pharmacology , Hydroxycholesterols/metabolism , Interferons/pharmacology , Macrophages/immunology , Macrophages/metabolism , STAT1 Transcription Factor/metabolism , Animals , Binding Sites , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Bone Marrow Cells/virology , Gene Expression Regulation , Hydroxycholesterols/pharmacology , Liver X Receptors , Macrophage Activation/drug effects , Macrophage Activation/immunology , Macrophages/drug effects , Macrophages/virology , Mevalonic Acid/metabolism , Mice , Orphan Nuclear Receptors/metabolism , Promoter Regions, Genetic , Protein Binding , Steroid Hydroxylases/genetics , Virus Replication/drug effects
15.
PLoS Pathog ; 8(8): e1002901, 2012.
Article in English | MEDLINE | ID: mdl-22952450

ABSTRACT

Little is known about the role of viral genes in modulating host cytokine responses. Here we report a new functional role of the viral encoded IE1 protein of the murine cytomegalovirus in sculpting the inflammatory response in an acute infection. In time course experiments of infected primary macrophages (MΦs) measuring cytokine production levels, genetic ablation of the immediate-early 1 (ie1) gene results in a significant increase in TNFα production. Intracellular staining for cytokine production and viral early gene expression shows that TNFα production is highly associated with the productively infected MΦ population of cells. The ie1- dependent phenotype of enhanced MΦ TNFα production occurs at both protein and RNA levels. Noticeably, we show in a series of in vivo infection experiments that in multiple organs the presence of ie1 potently inhibits the pro-inflammatory cytokine response. From these experiments, levels of TNFα, and to a lesser extent IFNß, but not the anti-inflammatory cytokine IL10, are moderated in the presence of ie1. The ie1- mediated inhibition of TNFα production has a similar quantitative phenotype profile in infection of susceptible (BALB/c) and resistant (C57BL/6) mouse strains as well as in a severe immuno-ablative model of infection. In vitro experiments with infected macrophages reveal that deletion of ie1 results in increased sensitivity of viral replication to TNFα inhibition. However, in vivo infection studies show that genetic ablation of TNFα or TNFRp55 receptor is not sufficient to rescue the restricted replication phenotype of the ie1 mutant virus. These results provide, for the first time, evidence for a role of IE1 as a regulator of the pro-inflammatory response and demonstrate a specific pathogen gene capable of moderating the host production of TNFα in vivo.


Subject(s)
Gene Expression Regulation, Viral/genetics , Herpesviridae Infections/immunology , Immediate-Early Proteins/genetics , Muromegalovirus/genetics , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Line , Cytokines/metabolism , DNA Replication , DNA, Viral/genetics , Female , Herpesviridae Infections/virology , Immediate-Early Proteins/metabolism , Liver/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Muromegalovirus/growth & development , Muromegalovirus/physiology , Phenotype , Signal Transduction , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
16.
PLoS Biol ; 9(3): e1000598, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21408089

ABSTRACT

Little is known about the protective role of inflammatory processes in modulating lipid metabolism in infection. Here we report an intimate link between the innate immune response to infection and regulation of the sterol metabolic network characterized by down-regulation of sterol biosynthesis by an interferon regulatory loop mechanism. In time-series experiments profiling genome-wide lipid-associated gene expression of macrophages, we show a selective and coordinated negative regulation of the complete sterol pathway upon viral infection or cytokine treatment with IFNγ or ß but not TNF, IL1ß, or IL6. Quantitative analysis at the protein level of selected sterol metabolic enzymes upon infection shows a similar level of suppression. Experimental testing of sterol metabolite levels using lipidomic-based measurements shows a reduction in metabolic output. On the basis of pharmacologic and RNAi inhibition of the sterol pathway we show augmented protection against viral infection, and in combination with metabolite rescue experiments, we identify the requirement of the mevalonate-isoprenoid branch of the sterol metabolic network in the protective response upon statin or IFNß treatment. Conditioned media experiments from infected cells support an involvement of secreted type 1 interferon(s) to be sufficient for reducing the sterol pathway upon infection. Moreover, we show that infection of primary macrophages containing a genetic knockout of the major type I interferon, IFNß, leads to only a partial suppression of the sterol pathway, while genetic knockout of the receptor for all type I interferon family members, ifnar1, or associated signaling component, tyk2, completely abolishes the reduction of the sterol biosynthetic activity upon infection. Levels of the proteolytically cleaved nuclear forms of SREBP2, a key transcriptional regulator of sterol biosynthesis, are reduced upon infection and IFNß treatment at both the protein and de novo transcription level. The reduction in srebf2 gene transcription upon infection and IFN treatment is also found to be strictly dependent on ifnar1. Altogether these results show that type 1 IFN signaling is both necessary and sufficient for reducing the sterol metabolic network activity upon infection, thereby linking the regulation of the sterol pathway with interferon anti-viral defense responses. These findings bring a new link between sterol metabolism and interferon antiviral response and support the idea of using host metabolic modifiers of innate immunity as a potential antiviral strategy.


Subject(s)
Down-Regulation , Herpesviridae Infections/immunology , Interferon-beta/physiology , Interferon-gamma/physiology , Muromegalovirus/immunology , Sterols/biosynthesis , Animals , Antiviral Agents/pharmacology , Cholesterol/metabolism , Herpesviridae Infections/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Immunity, Innate , Interferon-beta/biosynthesis , Interferon-beta/pharmacology , Interferon-gamma/biosynthesis , Interferon-gamma/pharmacology , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , NIH 3T3 Cells , RNA Interference , Signal Transduction , Simvastatin/pharmacology , Sterol Regulatory Element Binding Protein 2/physiology
17.
J Cell Biochem ; 111(3): 564-73, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20568119

ABSTRACT

Myostatin is a negative regulator of skeletal muscle mass. The pathways employed in modulating myostatin gene expression are scarcely known. We aimed to determine the signaling pathway of myostatin induction by a histone deacetylase (HDAC) inhibitor-trichostatin A (TSA) in differentiated C(2)C(12) myocytes. TSA increased myostatin mRNA expression up to 40-fold after treatment for 24 h, and induced myostatin promoter activity up to 3.8-fold. Pretreatment with actinomycin D reduced the TSA-induced myostatin mRNA by 93%, suggesting TSA-induced myostatin expression mainly at the transcriptional level. Pretreatment with p38 MAPK (SB203580) and JNK (SP600125) inhibitors, but not ERK (PD98059) inhibitor, blocked TSA-induced myostatin expression, respectively, by 72% and 43%. Knockdown of p38 MAPK by RNAi inhibited the TSA-induced myostatin expression by 77% in C(2)C(12) myoblasts. The protein levels of phosphorylated p38 MAPK, JNK, but not ERK, increased with TSA treatment in differentiated C(2)C(12) cells. Direct activation of p38 MAPK and JNK by anisomycin in the absence of TSA increased myostatin mRNA by fourfold. The phosphorylated form of the kinase MKK3/4/6 and ASK1, upstream cascades of p38 MAPK and JNK, also increased with TSA treatment. We concluded that the induction of myostatin by TSA treatment in differentiated C(2)C(12) cells is in part through ASK1-MKK3/6-p38 MAPK and ASK1-MKK4-JNK signaling pathways. Activation of p38 MAPK and JNK axis is necessary, but not sufficient for TSA-induced myostatin expression.


Subject(s)
Hydroxamic Acids/pharmacology , Muscle Cells/metabolism , Myostatin/genetics , Transcriptional Activation/drug effects , Animals , Antifungal Agents , Cells, Cultured , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 6/metabolism , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Kinase Kinases/metabolism , Mice , Myostatin/drug effects , Phosphorylation , Proto-Oncogene Proteins/metabolism , RNA, Messenger/analysis , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...