Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 11712, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810194

ABSTRACT

An optimized mixture of polydopamine (PDA) and polyvinyl alcohol (PVA) is employed as the surface functionalizing agent and reducing agent to encapsulate individual polypropylene (PP) fibers of polypropylene micromembrane (PPMM). The functionalized PPMM becomes hydrophilic to allow the formation of Au nuclei for subsequent electroless Au deposition. The metalized PPMM is further deposited with IrO2 nanoparticles, and evaluated as a flexible and porous pH sensor. Images from scanning electron microscope confirms the uniform formation of IrO2 nanoparticles on Au-coated PP fibers. For pH-sensing performance, the IrO2-decorated metalized PPMM reveals a super-Nernstian response for a sensing slope of -74.45 mV/pH in aqueous solutions with pH value ranging between 2 and 12. In addition, the pH-sensing performance is properly maintained after 5000 bending cycles and hysteresis is modest in an acidic environment. The cell viability test indicates a negligible bio-toxicity. Our strategy of using a conductive polymeric membrane decorated with IrO2 nanoparticles enables possible sensing applications in wearable and implantable electronics.


Subject(s)
Nanoparticles , Polypropylenes , Electronics , Hydrogen-Ion Concentration , Polypropylenes/chemistry , Polyvinyl Alcohol/chemistry
2.
Materials (Basel) ; 13(12)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-32545822

ABSTRACT

We demonstrate a facile fabrication scheme for Co3O4@CoO@Co (gradient core@shell) nanoparticles on graphene and explore their electrocatalytic potentials for an oxygen evolution reaction (OER) and an oxygen reduction reaction (ORR) in alkaline electrolytes. The synthetic approach begins with the preparation of Co3O4 nanoparticles via a hydrothermal process, which is followed by a controlled hydrogen reduction treatment to render nanoparticles with radial constituents of Co3O4/CoO/Co (inside/outside). X-ray diffraction patterns confirm the formation of crystalline Co3O4 nanoparticles, and their gradual transformation to cubic CoO and fcc Co on the surface. Images from transmission electron microscope reveal a core@shell microstructure. These Co3O4@CoO@Co nanoparticles show impressive activities and durability for OER. For ORR electrocatalysis, the Co3O4@CoO@Co nanoparticles are subjected to a galvanic displacement reaction in which the surface Co atoms undergo oxidative dissolution for the reduction of Pt ions from the electrolyte to form Co3O4@Pt nanoparticles. With commercial Pt/C as a benchmark, we determine the ORR activities in sequence of Pt/C > Co3O4@Pt > Co3O4. Measurements from a rotation disk electrode at various rotation speeds indicate a 4-electron transfer path for Co3O4@Pt. In addition, the specific activity of Co3O4@Pt is more than two times greater than that of Pt/C.

SELECTION OF CITATIONS
SEARCH DETAIL
...