Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 58(32): 8914-8919, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31873669

ABSTRACT

An artificial subwavelength dielectric metalens (ML), the realization of being ultrathin and light-weight, provides a potential candidate with replacing a traditional bulky curved lens with a high image quality. A ML with 1.5 mm in diameter having numerical aperture (NA) $\sim{0.60}$∼0.60 at the near-infrared wavelength of $\lambda = 0.94 \,\,{\unicode{x00B5}{\rm m}}$λ=0.94µm was designed by the finite-difference time-domain (FDTD) method with speeding up optimization of the MLs' scheme by the deep neural network (DNN) model. Additionally, an ultrathin high NA ML was achieved by cost effective semiconductor manufacturing technology. The fabricated ML can focus an incident light down to a spot as small as $ \sim{5.2}\,\,{\rm \unicode{x00B5}{\rm m}} $∼5.2µm with high optical efficiency of $\sim{88.4}\% $∼88.4% (focusing efficiency achieved, 23.7%). We also provided an efficient MLs' semiconductor manufacturing technology for the development of an optical device in near-infrared image technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...