Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chin Med Assoc ; 84(12): 1092-1099, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34670224

ABSTRACT

BACKGROUND: Portal hypertension is a pathophysiological abnormality with distinct vascular derangements associated with liver cirrhosis. Dipeptidyl peptidase-4 (DPP-4) inhibitors are antidiabetic agents which exert pleiotropic vascular effects, but their relevant impact on portal hypertension and liver cirrhosis remains unclear. This study aims to clarify this issue. METHODS: Rats receiving partial portal vein ligation (PVL) and common bile duct ligation (BDL) served as experimental models for portal hypertension and cirrhosis, respectively. After linagliptin (a DPP-4 inhibitor) treatment, the survival rate, hemodynamics, biochemistry parameters and liver histopathology were evaluated. In addition, the collateral vascular responsiveness and severity of portal-systemic shunting were examined. mRNA and protein expression in the vasculature and liver were also examined. RESULTS: Linagliptin significantly reduced portal pressure (control vs linagliptin: 12.9 ± 1.2 vs 9.1 ± 2.0 mmHg, p = 0.001) and upregulated nitric oxide synthase expression in the collateral vessel, superior mesentery artery, and liver of PVL rats. However, the portal hypotensive effect was insignificant in BDL rats. Glucose plasma levels, liver and renal biochemistry parameters were not significantly altered by linagliptin. The degree of portal-systemic shunting and collateral vascular responsiveness were also not significantly altered by linagliptin treatment. Linagliptin did not improve liver fibrosis and hepatic inflammation in BDL rats. CONCLUSION: DPP-4 inhibition by linagliptin reduced portal pressure in portal hypertensive rats but not in cirrhotic rats. It may act by decreasing intrahepatic resistance via upregulation of hepatic nitric oxide synthase in portal hypertensive rats.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors/administration & dosage , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Hypertension, Portal/drug therapy , Liver Cirrhosis/complications , Liver Cirrhosis/etiology , Animals , Liver Cirrhosis/physiopathology , RNA, Messenger/genetics , Rats
2.
PLoS Biol ; 17(10): e3000508, 2019 10.
Article in English | MEDLINE | ID: mdl-31593566

ABSTRACT

CDGSH iron-sulfur domain-containing protein 2 (Cisd2) is pivotal to mitochondrial integrity and intracellular Ca2+ homeostasis. In the heart of Cisd2 knockout mice, Cisd2 deficiency causes intercalated disc defects and leads to degeneration of the mitochondria and sarcomeres, thereby impairing its electromechanical functioning. Furthermore, Cisd2 deficiency disrupts Ca2+ homeostasis via dysregulation of sarco/endoplasmic reticulum Ca2+-ATPase (Serca2a) activity, resulting in an increased level of basal cytosolic Ca2+ and mitochondrial Ca2+ overload in cardiomyocytes. Most strikingly, in Cisd2 transgenic mice, a persistently high level of Cisd2 is sufficient to delay cardiac aging and attenuate age-related structural defects and functional decline. In addition, it results in a younger cardiac transcriptome pattern during old age. Our findings indicate that Cisd2 plays an essential role in cardiac aging and in the heart's electromechanical functioning. They highlight Cisd2 as a novel drug target when developing therapies to delay cardiac aging and ameliorate age-related cardiac dysfunction.


Subject(s)
Aging, Premature/genetics , Aging/physiology , Atrioventricular Block/genetics , Autophagy-Related Proteins/genetics , Heart/physiopathology , Nerve Tissue Proteins/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Aging, Premature/metabolism , Aging, Premature/physiopathology , Animals , Atrioventricular Block/diagnostic imaging , Atrioventricular Block/metabolism , Atrioventricular Block/physiopathology , Autophagy-Related Proteins/deficiency , Calcium/metabolism , Electrocardiography , Gene Expression Profiling , Gene Expression Regulation , Heart/physiology , Homeostasis/physiology , Male , Mice , Mice, Knockout , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Nerve Tissue Proteins/deficiency , Sarcomeres/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...