Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 11: 1264593, 2023.
Article in English | MEDLINE | ID: mdl-37720718

ABSTRACT

Li-O2 batteries are a promising technology for the upcoming energy storage requirements because of their high theoretical specific energy density of 11,680 Wh kg-1. Currently, the actual capacity of Li-O2 batteries is much lower than this theoretical value. In many studies, perovskites have been applied as catalysts to improve the air electrode reactions in Li-O2 batteries. The effects of structure and doping on the catalytic activity of perovskites are still unclear. La1-xSrxCoO3-δ (x = 0.1, 0.3, and 0.5) and La0.9Sr0.1YbO3-δ mixed with carbon black (Vulcan XC500 or Super P) were used as air electrode catalysts. Electrochemical characterizations were conducted using a Swagelok-type cell. The charge-discharge capacity and cyclic voltammetry (CV) performance were investigated in this study. The La1-xSrxCoO3-δ (x = 0.1, 0.3, and 0.5) is a suitable cathode catalyst for Li-O2 batteries. In this study, the La0.5Sr0.5CoO3-δ/Super P cathode demonstrated the highest discharge capacity (6,032 mAh g-1). This excellent performance was attributed to the large reaction area and enhanced Li2CO3 generation.

SELECTION OF CITATIONS
SEARCH DETAIL
...