Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 84(16): 7131-7, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22881221

ABSTRACT

We present atmospheric pressure laser-induced acoustic desorption chemical ionization (AP/LIAD-CI) with O(2) carrier/reagent gas as a powerful new approach for the analysis of saturated hydrocarbon mixtures. Nonthermal sample vaporization with subsequent chemical ionization generates abundant ion signals for straight-chain, branched, and cycloalkanes with minimal or no fragmentation. [M - H](+) is the dominant species for straight-chain and branched alkanes. For cycloalkanes, M(+•) species dominate the mass spectrum at lower capillary temperature (<100 °C) and [M - H](+) at higher temperature (>200 °C). The mass spectrum for a straight-chain alkane mixture (C(21)-C(40)) shows comparable ionization efficiency for all components. AP/LIAD-CI produces molecular weight distributions similar to those for gel permeation chromatography for polyethylene polymers, Polywax 500 and Polywax 655. Coupling of the technique to Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for the analysis of complex hydrocarbon mixtures provides unparalleled mass resolution and accuracy to facilitate unambiguous elemental composition assignments, e.g., 1754 peaks (rms error = 175 ppb) corresponding to a paraffin series (C(12)-C(49), double-bond equivalents, DBE = 0) and higher DBE series corresponding to cycloparaffins containing one to eight rings. Isoabundance-contoured plots of DBE versus carbon number highlight steranes (DBE = 4) of carbon number C(27)-C(30) and hopanes of C(29)-C(35) (DBE = 5), with sterane-to-hopane ratio in good agreement with field ionization (FI) mass spectrometry analysis, but performed at atmospheric pressure. The overall speciation of nonpolar, aliphatic hydrocarbon base oil species offers a promising diagnostic probe to characterize crude oil and its products.

2.
J Mass Spectrom ; 46(4): 337-43, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21438082

ABSTRACT

To look into complex mixtures of petroleum heavy ends at the molecular level, ultra high-resolution mass spectrometry, i.e. resolving power > 50,000, is needed to resolve overlapping components for accurate determination of molecular composition of individual components. Recent progress in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) incorporated with soft ionization techniques adaptable to liquid chromatography enables analysis of petroleum high ends, i.e., heavy oils, residua and asphaltenes. FT-ICR MS at the Future Fuels Institute of Florida State University and the National High Magnetic Field Laboratory (NHMFL) routinely provides 1,000,000 resolving power at 400 Da, with root mean square (rms) mass measurement accuracy between 30 and 500 ppb for 5000-30,000 identified species in a single mass spectrum. Phase correction of the detected ion signal increases resolving power 40-100%, improving mass accuracy up to twofold. Overlapping ionic species that differ in mass by as little as one electron mass (548 µDa) can be resolved. A database of more than 100,000 components of different elemental composition has been generated at NHMFL.

SELECTION OF CITATIONS
SEARCH DETAIL
...