Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Biomedicines ; 11(1)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36672669

ABSTRACT

Acute aortic dissection (AAD) and acute myocardial infarction (AMI) are both severe cardiovascular diseases that may cause sudden death. However, whether serum proteins are differentially expressed between AAD and AMI remains unclear. Here, we aimed to explore serum protein profiles between AAD and AMI patients. A total of 75 serum samples were collected, including AAD patients without AMI (n = 25), AMI patients without AAD (n = 25), and normal subjects (n = 25). Protein identities and expression levels were assessed by LC-MS/MS analysis and a label-free quantitation method, respectively. After depletion of albumin and IgG, a total of 117 proteins with differential expression (fold change ≥2 or ≤−2.0, p < 0.05) were identified, of which 60 were upregulated and 57 were downregulated in AAD sera as compared to AMI sera. Bioinformatic analysis revealed that the differentially expressed serum proteins were mainly derived from exosomes and the extracellular space, and their molecular functions and biological processes were primarily involved in the activity of transporters and complements and the immune response. In addition, the serum level of Cadherin-5, an identified protein with significant regulation in AAD, was further evaluated by ELISA and the results showed that Cadherin-5 in AAD sera was higher that in AMI and healthy sera. Collectively, these findings reveal the differential serum protein profiles between AAD and AMI, which may reflect the divergent pathophysiological progression between the two cardiovascular diseases.

2.
Ann Vasc Surg ; 89: 216-221, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36270549

ABSTRACT

BACKGROUND: To compare short-term outcomes of endovascular aneurysm repair (EVAR) with aorto-uni-iliac (AUI) versus bifurcated (BIFUR) endografts in ruptured abdominal aortic aneurysm (rAAA). METHODS: A total of 26 rAAA patients receiving EVAR with AUI device (14 patients) or the BIFUR graft (12 patients) between January 2016 and December 2020 were enrolled and reviewed. All EVARs for rAAA were performed in an emergency basis. Graft implantation success, short-term survival rates, and major complications were analyzed. RESULTS: Endograft implantation success was achieved in all patients. AUI group had shorter operative time than BIFUR group (121.77 ± 75.03 vs. 138.45 ± 143.34; P < 0.05). The 24-hr and 30-day survival rates were 85.7% (12/14) and 71.4% (10/14), respectively, whereas BIFUR group have 58.3% and 58.3%. None of the rAAA patients in both groups required reintervention. AUI group exhibited less incidence of compartment syndrome and endoleak compared with those of BIFUR ones. CONCLUSIONS: The short-term results of EVAR with the AUI configuration graft in patients with rAAAs are encouraging.


Subject(s)
Aortic Aneurysm, Abdominal , Aortic Rupture , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Humans , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/surgery , Aortic Aneurysm, Abdominal/complications , Treatment Outcome , Time Factors , Aortic Rupture/diagnostic imaging , Aortic Rupture/surgery , Aortic Rupture/etiology , Retrospective Studies , Risk Factors
3.
Article in English | MEDLINE | ID: mdl-33884024

ABSTRACT

Doxorubicin (DOX), a chemotherapeutic drug, often causes many adverse side effects in patients with cancer, such as weight loss, motor disability, blood circulation defects, myelosuppression, myocardial injury, joint degeneration, and bone loss. The Chinese herbal medicine Guilu Erxian Glue (GEG) has been used in the prevention and treatment of osteoarthritis and osteoporosis for hundreds of years, with considerably fewer side effects. We expected that GEG could serve as a protective and beneficial alternative treatment for DOX-induced adverse side effects. In this study, we evaluated whether GEG can alleviate DOX-induced weight loss, motor disability, abnormal blood circulation, myelosuppression, myocardial injury, joint degeneration, and bone loss by using chemotherapy models of synoviocyte cell line HIG-82 and mice. Moreover, we examined the antioxidant capacity of GEG by using DPPH (1,1-diphenyl-2-picrylhydrazyl) free-radical scavenging. Our results revealed that GEG treatment can significantly enhance DPPH free-radical scavenging and reduce DOX-induced cytotoxicity in synoviocyte HIG-82 cells. In addition, GEG treatment for 2 weeks can significantly relieve weight loss, enhance exhaustive exercise capacity, improve blood circulation, alleviate myocardial oxidative stress and inflammation, and strengthen the tibias of DOX-treated mice. Thus, we suggest that GEG treatment can be a protective and alternative therapy for alleviating chemotherapy-related side effects such as weight loss, motor disability, blood circulation defects, and bone loss.

4.
Biofactors ; 47(3): 386-402, 2021 May.
Article in English | MEDLINE | ID: mdl-33502806

ABSTRACT

Acute myocardial infarction (AMI) and the following heart failure are public health problems faced all over the globe. The current study set out to investigate the role of B-cell lymphoma 6 (BCL-6) in cardiac protection after AMI. Initially, AMI mouse models and H9c2 cell oxygen-glucose deprivation (OGD) models were established. The cell models were transfected with the vectors containing oe-BCL-6, oe-EZH2, sh-EZH2, miR-34a mimic, and miR-34a inhibitor. RT-qPCR and Western blot analysis were applied to detect the expression patterns of microRNA-34a (miR-34a), BCL-6, enhancer of zeste homolog 2 (EZH2), and C1q tumor necrosis factor-related protein 9 (CTRP9) in the treated cell models. ChIP-qPCR and co-immunoprecipitation assay were performed to detect EZH2 enrichment and H3K27me3 levels in the miR-34a promoter region and the interaction between BCL-2 and EZH2, respectively. EdU staining, TUNEL staining, and flow cytometry were performed to detect cell proliferation and apoptosis, while ELISA was conducted to detect the oxidative stress levels. It was found that miR-34a was highly expressed in heart tissues of AMI models, while BCL-6 and EZH2 were poorly expressed. BCL-2 overexpression increased the recruitment of EZH2, upregulated H3K27me3 level in the miR-34a promoter region, and inhibited the miR-34a expression. Ctrp9, the downstream negative-regulatory molecule of miR-34a, was upregulated. Besides, miR-34a/CTRP9 expression changes were found to affect cardiomyocyte apoptosis, oxidation stress, and proliferation, and prevent myocardial injury in AMI mice. Our findings indicate that BCL-6 increases the level of H3K27me3 in the promoter region of miR-34a via EZH2 recruitment and CTRP9 upregulation, which inhibits the apoptosis of myocardial cells.


Subject(s)
Adiponectin/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Glycoproteins/metabolism , MicroRNAs/metabolism , Myocardial Infarction/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Up-Regulation/genetics , Adiponectin/genetics , Animals , Disease Models, Animal , Enhancer of Zeste Homolog 2 Protein/genetics , Glycoproteins/genetics , Male , Methylation , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Proto-Oncogene Proteins c-bcl-6/genetics , Signal Transduction/genetics
5.
Article in English | MEDLINE | ID: mdl-33178329

ABSTRACT

The study mainly investigated the effects of Chinese veterinary medicine B307 in cardiac and motor functions in animal models of pigeons and mice. Related cellular mechanisms were also studied in the neuroblastoma cell model of SH-SY5Y. Cardiac functions of pigeons and mice were examined by using moorFLPI Laser color Doppler imager and M-mode echocardiography, and motor functions were examined by using muscle electrical stimulation and force recording in the isolated breast muscle. Intracellular calcium levels and electrical activity of SH-SY5Y cells were examined by using Fura 2-AM fluorescence and MED64 system separately. Our results in vivo found that those pigeons under oral B307 treatment obviously enhanced subcutaneous microcirculation and contractile force and prolonged fatigue time in their breast muscles. Those mice under oral B307 treatment obviously elevated ejection fraction and cardiac output in their hearts. Our results in vitro showed that those SH-SY5Y cells under B307 treatment obviously increased intracellular calcium mobilization and electrical activities. These results revealed that improvement of cardiac and motor functions under B307 treatments may be caused by increasing electrical activities and intracellular calcium levels in neuromuscular cells and a similar mechanism may also occur in muscle cells. Thus, we suggested that B307 can be a functional Chinese veterinary medicine for flying pigeons.

6.
Food Sci Nutr ; 8(7): 3682-3691, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32724631

ABSTRACT

Exhaustive exercise may damage muscles due to oxidative stress and inflammation and cause muscle fatigue and soreness. The study investigated the effects of Chinese herbal supplements (CHS) B307 on muscle endurance after exhaustive swimming (ES). Thirty-two male ICR mice were randomly divided into 4 groups: Sham + ES, pretreatment of CHS B307 + ES (Pre + ES), post-treatment of CHS B307 + ES (Post + ES), and dual treatment of CHS B307 + ES (Dual + ES). All mice were subjected to ES in the form of a forced swimming test. Then, we compared ES time (EST) as the index of muscular endurance. Also, we examined the fatigue, oxidative stress, inflammation, and damage in the muscle tissue among these groups by using immunohistochemistry (IHC), chemiluminescence, and biochemical analysis. Our results revealed that those mice of Pre + ES and Dual + ES groups had remarkably better EST than those mice of Sham + ES and Post + ES groups. Those mice with oral treatment of CHS B307(Pre + ES, Post + ES, and Dual + ES groups) showed significantly reduced leukocyte counts in the urine, and reduced levels of reactive oxygen species (ROS), neutrophils, and lactic acid in the blood than those mice of Sham + ES. In addition, those mice with oral treatment of CHS B307 (Pre + ES, Post + ES, and Dual + ES groups) showed significant alleviation of oxidative stress, inflammation, and damage in the muscle tissue than those mice of Sham + ES. Thus, we suggested that CHS B307 can be a functional sports supplement because it can enhance muscle endurance after exhaustive swimming via suppressing fatigue, oxidative stress, and inflammation.

7.
Article in English | MEDLINE | ID: mdl-32256665

ABSTRACT

Hypothyroidism frequently causes cardiopulmonary dysfunction, such as heart failure and respiratory and metabolic deficiencies. This study investigated the effects of Chinese herbal formula B307 on thyroidectomy-induced cardiopulmonary exercise dysfunction in rats. Twenty male rats were equally divided into four groups: negative control with sham treatment, positive control with oral B307 treatment only, thyroidectomy treatment only, and thyroidectomy with B307 posttreatment groups. The feeding dose of B307 was 50 mg/kg per day for 14 days. We examined and then compared the thyroid-stimulating hormone (TSH), free triiodothyronine (T3), free thyroxine (T4), and reactive oxygen species (ROS) from the blood of these four groups. Also, we compared the body weight, neck subcutaneous blood flow, cardiac ejection function, cardiopulmonary exercise function of oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory quotient (RQ = VCO2/VO2) among the four groups. Our results indicated that thyroidectomized rats had significantly decreased body weight, neck subcutaneous blood flow, cardiac ejection function, serum T3 and T4, and VO2 and VCO2, but had significantly increased ROS and TSH levels and RQ values compared with sham rats (P < 0.01-0.05). In addition, thyroidectomized rats receiving oral B307 treatment had significantly increased body weight, neck subcutaneous blood flow, cardiac ejection function, and VO2, but significantly decreased ROS and TSH levels and VCO2 and RQ values compared with thyroidectomized rats (P < 0.01-0.05). We suggest that the B307 could be a protective and beneficial alternative treatment for thyroidectomy-induced cardiopulmonary exercise dysfunction.

8.
BMC Public Health ; 19(1): 1215, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31481039

ABSTRACT

BACKGROUND: To investigate the differences in body composition and metabolic syndrome (MS) under a daily 12,000-step strategy with or without moderate-intensity walking exercise in college students with obesity. METHODS: Thirty-two adults with obesity (mean (s.d.) age: 19.72 (0.80) years; height: 165.38 (3.99) cm; wt: 83.31 (4.66) kg; body mass index: 30.38 (0.83) kg m- 2) were recruited and randomly assigned to the walking step goal group (WSG; achieving 12,000 steps per day), walking exercise group (WEG; achieving 12,000 steps per day, including 3 days per week on which walking at a step rate of over 103 steps min- 1 was required), or control group (CG; maintaining a free-living life style). Each participant's accumulated daily steps from daily activities and walking exercises were monitored using a smartwatch for 8 weeks. The variables of body composition and MS were measured before and after intervention. RESULTS: Average daily steps over 8 weeks did not significantly differ between the WSG and WEG (11,677.67 (480.24) vs. 12,131.90 (527.14) steps per day, respectively, P > .05). Although the CG and WSG showed no improvement in body composition, the WEG exhibited significant improvements in terms of hip circumference and visceral fat area (VFA) (∆ - 2.28 (3.27) cm and ∆ - 13.11 (9.83) cm2, respectively, P < .05); high-density lipoprotein cholesterol (HDL-C), fasting glucose (FG), and triglycerides (TG) (∆ 16.36 (8.39), ∆ - 2.53 (3.73), and ∆ - 10.52 (36.26) mg dL- 1, respectively, P < .05). The WSG exhibited improvements only in HDL-C (∆ 14.24 (16.13) mg dL- 1, P < .05). CONCLUSION: The combination of walking exercise program and daily step goal is a more time efficient strategy in improving body composition and MS than simply establishing a daily step goal. Furthermore, this strategy may also include a potential reduction effect on the risk factors of cardiovascular diseases. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry, number ACTR N12618001237279 (Retrospectively registered).


Subject(s)
Body Composition/physiology , Exercise Therapy/methods , Metabolic Syndrome/physiopathology , Obesity/therapy , Walking/physiology , Australia , Female , Goals , Humans , Male , Treatment Outcome , Walking/statistics & numerical data , Young Adult
9.
Article in English | MEDLINE | ID: mdl-31360207

ABSTRACT

In Taiwan, the herbal formula B401 is considered as a health supplement for middle-aged women that can alleviate sweating, anxiety, and sleep disorders. However, the relevant mechanisms are still unclear. In this study, we evaluated the beneficial effects of the herbal formula B401 therapy in the reproductive regulation of ovariectomised mice. Female ICR mice were randomised into four groups: wild-type (WT) mice with sham treatment, wild-type mice treated with the herbal formula B401, bilateral ovariectomised (OVX) mice with sham treatment, and bilateral ovariectomised mice treated with the herbal formula B401. Mice were orally given the herbal formula B401 at a dose of 30 mg/kg bw/day for 2 weeks. At the end of oral treatment with sham or the herbal formula B401, levels of reactive oxygen species (ROS), calcium, phosphorus, and estradiol-17ß in the blood; uterine weight and endometrial thickness; and expressions of estrogen receptor α (ERα), estrogen receptor ß (ERß), progesterone receptor (PR), vascular endothelial growth factor (VEGF), and superoxide dismutase 2 (SOD2) in the uterine tissue were examined and then compared among the four groups of mice. We found that OVX mice decreased levels of calcium, phosphorus, and estradiol-17ß in the blood, decreased uterine weight and endometrial thickness, and decreased expressions of ERα, ERß, PR, and SOD2 in the uterine tissue but increased blood ROS levels compared with those of WT mice. In addition, OVX mice with the herbal formula B401 therapy can increase levels of calcium, phosphorus, and estradiol-17ß in the blood, increase uterine weight and endometrial thickness, and increase expressions of ERα, ERß, PR, VEGF, and SOD2 in the uterine tissue but decrease blood ROS levels. Our results may provide reasonable explanation for the reproductive regulation of the herbal formula B401 therapy.

10.
Drug Des Devel Ther ; 12: 1165-1171, 2018.
Article in English | MEDLINE | ID: mdl-29780237

ABSTRACT

AIM: The present study investigated whether intraperitoneal treatment with the herbal formula B210 ([B210]; a herbal composition of Gastrodia elata and Cinnamomum cassia) can reduce snoring in aged rats. Also, we studied possible neural mechanisms involved in B210 treatment and subsequent reduced snoring in rats. METHODS AND RESULT: We compared pressure and frequency of snoring, activities of phrenic nerve (PNA), activities of recurrent laryngeal nerve (RLNA) and activities of hypoglossal nerve (HNA), inspiratory time (TI) and expiratory time (TE) of PNA, and pre-inspiratory time (Pre-TI) of HNA in aged rats between sham and B210 treatment groups (30 mg/mL dissolved in DMSO). We found that aged rats that received B210 treatment had significantly reduced pressure and frequency of snoring than rats who received sham treatment. Also, we observed that aged rats that received B210 treatment had significantly increased PNA, RLNA, and HNA, extended TI and TE of PNA, and prolonged Pre-TI of HNA compared to rats that received sham treatment. In other words, B210 treatment may relieve snoring through modulating activities and breathing time of upper airway related nerves in aged rats. CONCLUSION: We suggested that the B210 might be a potential herbal formula for snoring remission.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Hypoglossal Nerve/drug effects , Respiratory System/drug effects , Snoring/drug therapy , Animals , Drugs, Chinese Herbal/administration & dosage , Hypoglossal Nerve/metabolism , Male , Medicine, Chinese Traditional , Rats , Rats, Wistar , Respiratory System/metabolism , Snoring/metabolism
11.
Int J Med Sci ; 14(12): 1220-1230, 2017.
Article in English | MEDLINE | ID: mdl-29104478

ABSTRACT

The goal of our research was demonstrated that multiple molecules in microenvironments of the early osteoarthritis (OA) joint tissue may be actively responded to extracorporeal shockwave therapy (ESWT) treatment, which potentially regulated biological function of chondrocytes and synovial cells in early OA knee. We demonstrated that shockwave treatment induced the expression of protein-disulfide isomerase-associated 3 (Pdia-3) which was a significant mediator of the 1α,25-Dihydroxyvitamin D 3 (1α,25(OH)2D3) rapid signaling pathway, using two-dimensional electrophoresis, histological analysis and quantitative polymerase chain reaction (qPCR). We observed that the expression of Pdia-3 at 2 weeks was significantly higher than that of other group at 4, 8, and 12 weeks post-shockwave treatment in early OA rat knee model. The other factors of the rapid membrane signaling pathway, including extracellular signal-regulated protein kinases 1 (ERK1), osteopontin (OPG), alkaline phosphatase (ALP), and matrix metallopeptidase 13 (MMP13) were examined and were found to be significantly increased at 2 weeks post-shockwave treatment by qPCR in early OA of the knee. Our proteomic data revealed significant Pdia-3 expression in microenvironments of OA joint tissue that could be actively responded to ESWT, which may potentially regulate the biological functions of chondrocytes and osteoblasts in the treatment of the early OA of the knee.


Subject(s)
Extracorporeal Shockwave Therapy , Osteoarthritis, Knee/therapy , Protein Disulfide-Isomerases/metabolism , Signal Transduction , Vitamin D/analogs & derivatives , Animals , Cell Membrane/metabolism , Cell Membrane/radiation effects , Cellular Microenvironment/radiation effects , Chondrocytes/metabolism , Chondrocytes/radiation effects , Disease Models, Animal , Humans , Knee Joint/cytology , Knee Joint/metabolism , Knee Joint/radiation effects , Male , Osteoblasts/metabolism , Osteoblasts/radiation effects , Proteomics , Rats , Rats, Sprague-Dawley , Vitamin D/metabolism
12.
Neuroreport ; 28(15): 956-962, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28914739

ABSTRACT

The present study aimed to investigate how bats protect their brain in a hypothermic situation. Formosan leaf-nosed bats (Hipposideros terasensis) were used in this study and treated under three conditions: room temperature (25±1°C), low temperature (4±1°C), and hibernation. The reactive oxygen species (ROS) levels in the blood and apoptosis-related proteins in the brain tissue were assessed and then compared among those bats under three conditions. Our results showed that the blood ROS levels of bats treated under conditions of low temperature and hibernation were significantly reduced compared with bats treated under the condition of room temperature. Both immunohistochemistry and immunoblotting expressions of hypoxia, inflammation, and apoptosis-related proteins in the brain tissue of bats treated under the condition of hibernation were significantly reduced compared with those bats treated under conditions of room temperature and low temperature. Thus, we suggested that bats can protect the brain in cold environment by reducing blood ROS levels and decreasing expressions of hypoxia, inflammation, and apoptosis-related proteins in the brain. Possible protection mechanisms involved in hypothermic adaptations need to be further clarified.


Subject(s)
Brain/metabolism , Chiroptera/physiology , Cold Temperature , Hibernation/physiology , Neuroprotection/physiology , Animals , Apoptosis/physiology , Brain/cytology , Calpain/metabolism , Caspase 12/metabolism , Caspase 3/metabolism , Echolocation , Genes, bcl-2/physiology , Hypoxia/metabolism , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunohistochemistry , Inflammation/metabolism , Inflammation/pathology , Reactive Oxygen Species/blood , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein/metabolism
13.
Article in English | MEDLINE | ID: mdl-27761145

ABSTRACT

In this study, we have reported the herbal formula B401 that has neuroprotective effects via multifunction, multitarget characteristics. It is possible that the herbal formula B401 may also provide new insights for AD. Here, we studied protective effects in the Tet-On Aß42-GFP SH-SY5Y cell model and the APP/PS1/Tau triple transgenic mouse model by the herbal formula B401. In in vitro experiments, we showed that the herbal formula B401 treatment effectively reduces glutamate-induced excitotoxicity and acetylcholinesterase activity in Tet-On Aß42-GFP SH-SY5Y cells. In in vivo experiments, we found that oral B401 treatment effectively ameliorates neurocognitive dysfunctions of 3× Tg-AD mice via motor and cognitive behavior tests. By using magnetic resonance imaging, moorFLPI instruments, and chemiluminescence methods, we reported that oral B401 treatment effectively alleviates brain atrophy, improves subcutaneous blood flow, and reduces blood ROS in 3× Tg-AD mice. As observed from results of immunohistochemistry staining and western blotting, we found that oral B401 treatment significantly enhances expressions of neuroprotective proteins, while reducing expressions of AD derived proteins such as amyloid beta, phosphorylated Tau, neurofibrillary tangles, and 3-nitrotyrosine in the brain of 3× Tg-AD mice. Thus, the herbal formula B401 may have the potential to be developed into optimum TCM for AD patients.

14.
Neuroreport ; 27(12): 923-8, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27337384

ABSTRACT

Although echolocating bats and other mammals share the basic design of laryngeal apparatus for sound production and auditory system for sound reception, they have a specialized laryngeal mechanism for ultrasonic sound emissions as well as a highly developed auditory system for processing species-specific sounds. Because the sounds used by bats for echolocation and rodents for communication are quite different, there must be differences in the central nervous system devoted to producing and processing species-specific sounds between them. The present study examines the difference in the relative size of several brain structures and expression of auditory-related and vocal-related proteins in the central nervous system of echolocation bats and rodents. Here, we report that bats using constant frequency-frequency-modulated sounds (CF-FM bats) and FM bats for echolocation have a larger volume of midbrain nuclei (inferior and superior colliculi) and cerebellum relative to the size of the brain than rodents (mice and rats). However, the former have a smaller volume of the cerebrum and olfactory bulb, but greater expression of otoferlin and forkhead box protein P2 than the latter. Although the size of both midbrain colliculi is comparable in both CF-FM and FM bats, CF-FM bats have a larger cerebrum and greater expression of otoferlin and forkhead box protein P2 than FM bats. These differences in brain structure and protein expression are discussed in relation to their biologically relevant sounds and foraging behavior.


Subject(s)
Animal Communication , Brain/anatomy & histology , Brain/metabolism , Forkhead Transcription Factors/metabolism , Membrane Proteins/metabolism , Repressor Proteins/metabolism , Animals , Chiroptera , Echolocation , Female , Magnetic Resonance Imaging , Male , Mice, Inbred ICR , Rats, Wistar , Species Specificity
15.
Clin Interv Aging ; 10: 1825-37, 2015.
Article in English | MEDLINE | ID: mdl-26609226

ABSTRACT

BACKGROUND: Neurodegeneration is characterized by progressive neurological deficits due to selective neuronal loss in the nervous system. Huntington's disease (HD) is an incurable neurodegenerative disorder. Neurodegeneration in HD patients shows aging-dependent pattern. Our previous study has suggested that a herbal formula B401 may have neuroprotective effects in the brains of R6/2 mice. OBJECTIVE: To clarify possible mechanisms for neurodegeneration, which improves the understanding the aging process. This study focuses on clarifying neurodegenerative mechanisms and searching potential therapeutic targets in HD patients. METHODS: The oxidative stress and apoptosis were compared in the brain tissue between R6/2 HD mice with and without oral B401 treatment. Expressions of proteins for oxidative stress and apoptosis in the brain tissue of R6/2 HD mice were examined by using immunostaining and Western blotting techniques. RESULTS: R6/2 HD mice with oral B401 treatment significantly reduced reactive oxygen species levels in the blood, but markedly increased expressions of superoxide dismutase 2 in the brain tissue. Furthermore, R6/2 HD mice with oral B401 treatment significantly increased expressions of B-cell lymphoma 2 (Bcl-2), but significantly reduced expressions of Bcl-2-associated X protein (Bax), calpain, and caspase-3 in the brain tissue. CONCLUSION: Our findings provide evidence that the herbal formula B401 can remedy for aging-dependent neurodegeneration of R6/2 mice via suppressing oxidative stress and apoptosis in the brain. We suggest that the herbal formula B401 can be developed as a potential health supplement for ameliorating aging-dependent neurodegeneration.


Subject(s)
Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Huntington Disease/drug therapy , Huntington Disease/physiopathology , Oxidative Stress/drug effects , Aging/drug effects , Aging/pathology , Animals , Blotting, Western , Body Weight , Brain/pathology , Cell Line, Tumor , Disease Models, Animal , Humans , Locomotion , Longevity , Male , Mice , Mice, Transgenic , Neuroprotective Agents/pharmacology , Reactive Oxygen Species/metabolism
16.
Clin Interv Aging ; 10: 1173-87, 2015.
Article in English | MEDLINE | ID: mdl-26229452

ABSTRACT

Cardiac failure is often observed in aging patients with Huntington's disease (HD). However, conventional pharmacological treatments for cardiac failure in HD patients have rarely been studied. Chinese herbal medicines, especially combined herbal formulas, have been widely used to treat cardiac dysfunctions over the centuries. Thus, we assess whether oral treatment with herbal formula B307 can alleviate cardiac failure in transgenic mice with HD. After oral B307 or vehicle treatment for 2 weeks, cardiac function and cardiomyocytes in 12-week-old male R6/2 HD mice and their wild-type littermate controls (WT) were examined and then compared via echocardiography, immunohistochemistry, and Western blotting. We found that cardiac performance in aging R6/2 HD mice had significantly deteriorated in comparison with their WT (P<0.01). Cardiac expressions of superoxide dismutase 2 (SOD2) and B-cell lymphoma 2 (Bcl-2) in aging R6/2 HD mice were significantly lower than their WT (P<0.01), but cardiac expressions of tumor necrosis factor alpha (TNF-α), neurotrophin-3 (3-NT), 4-hydroxynonenal (4-HNE), Bcl-2-associated X protein (Bax), calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly higher than their WT (P<0.05). Furthermore, we found that cardiac performance in aging R6/2 HD mice had significantly improved under oral B307 treatment (P<0.05). Cardiac expressions of SOD2 and Bcl-2 of aging R6/2 HD mice were significantly higher under oral B307 treatment (P<0.01), but cardiac expressions of TNF-α, 3-NT, 4-HNE, Bax, calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly reduced under oral B307 treatment (P<0.05). Oral B307 treatment may briefly alleviate cardiac failure in aging HD R6/2 mice via suppressing cardiac oxidative stress, inflammation, and apoptosis. We suggested that the herbal formula B307 may be further developed as a potential health supplement for ameliorating cardiac failure associated with aging.


Subject(s)
Aging/physiology , Drugs, Chinese Herbal/pharmacology , Heart Failure/etiology , Heart Failure/prevention & control , Huntington Disease/complications , Administration, Oral , Animals , Apoptosis/drug effects , Cell Line, Tumor , Disease Models, Animal , Heart Failure/physiopathology , Inflammation/drug therapy , Inflammation/physiopathology , Inflammation Mediators/metabolism , Male , Mice , Mice, Transgenic , Oxidative Stress/drug effects
17.
Clin Interv Aging ; 10: 907-18, 2015.
Article in English | MEDLINE | ID: mdl-26064043

ABSTRACT

The present study aims to elucidate the roles of nitric oxide synthase activity, oxidative stress, inflammation, and apoptosis in penile toxicity of aging mice associated with excess manganese (Mn) treatment and to investigate the effect of oral treatment with the herbal formula B401 in this respect. ICR strain mice were divided into two groups: the vehicle (sham group) and the B401 (50 mg/kg) group. The mice were orally treated for 5 days; then a high single dose of MnCl2 (100 mg/kg) was given by intraperitoneal injection to the mice. One day after MnCl2 treatment, corpora cavernosal tissues of both Mn-treated mice and their controls were simultaneously sampled to examine their immunohistochemical staining and Western blot analysis. Nitric oxide (NO) production, levels of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS), expression levels of factors governing angiogenesis (vascular endothelial growth factor), oxidative stress (catalase, superoxide dismutase 2,4-hydroxynonenal), inflammation (tumor necrosis factor alpha), apoptosis (B-cell lymphoma 2 [Bcl-2], Bcl-2-associated X protein [Bax], cleaved poly(adenosine diphosphate-ribose) polymerase [c-PARP], cytochrome C, caspase-12, and caspase-3) were evaluated in penile corpus cavernosum of the mice. We found that penile toxicity in the mice was enhanced under excess Mn treatment through reduction of NOS activity and increase in oxidative stress, inflammation, and apoptosis in the penile cavernous tissue. Furthermore, the penile toxicity in mice with manganism was alleviated by oral B401 treatment through enhancement of both nitric oxide synthesis and angiogenesis, with simultaneous reduction of oxidative stress, inflammation, and apoptosis in penile corpus cavernosum. We suggest that the herbal formula B401 may serve as a potential dietotherapeutic supplement for penile toxicity or dysfunction in aging males.


Subject(s)
Aging , Antioxidants/pharmacology , Drugs, Chinese Herbal/pharmacology , Hazardous Substances/toxicity , Heavy Metal Poisoning , Manganese/toxicity , Penis/drug effects , Plant Preparations/pharmacology , Poisoning/drug therapy , Animals , Antioxidants/administration & dosage , Antioxidants/therapeutic use , Apoptosis/drug effects , Blotting, Western , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/therapeutic use , Immunohistochemistry , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred ICR , Oxidative Stress/drug effects , Plant Preparations/administration & dosage , Plant Preparations/therapeutic use , Vascular Endothelial Growth Factor A/metabolism
18.
Onco Targets Ther ; 8: 1193-210, 2015.
Article in English | MEDLINE | ID: mdl-26060405

ABSTRACT

OBJECTIVE: This study aimed to investigate whether the herbal formula B307 could alleviate doxorubicin (DOX)-induced acute cardiotoxicity. If so, we further unraveled possible molecular mechanisms of cardiac protection under treatment with the herbal formula B307. METHODS: Before the animal experiment, we examined relative viabilities of Huh7 cancer cells under treatment with the herbal formula B307. To test whether oral treatment with the herbal formula B307 could alleviate cardiotoxicity, equal volumes of B307 (50 mg/kg) or saline (sham treatment) were administered to 20-week-old male mice once daily for 14 consecutive days. Then, DOX (10 mg/kg; ip) was administered to male mice under B307 and sham treatments at 22-23 weeks of age. Cardiac functions in these mice were assessed via echocardiography at 23-24 weeks of age. Then, expressions of oxidative stress, inflammation, and apoptosis-related proteins were examined in the heart tissue by immunohistochemistry and Western blotting at 24-25 weeks of age. Apart from this, mortality rate and body weight were measured during the experiment. RESULTS: In vitro, the relative viabilities of Huh7 cancer cells under treatment with the herbal formula B307 had shown no obvious change at doses of 10-160 ng/mL. Furthermore, the relative viabilities of Huh7 cancer cells were significantly reduced under DOX treatment but showed no significant change under DOX only and DOX plus B307 treatment. In vivo, the mortality rate, body weight, and cardiac function of DOX-treated mice were obviously improved under oral treatment with the herbal formula B307. Furthermore, cardiac expressions of endothelial nitric oxide synthase, superoxide dismutase 2, and B-cell lymphoma 2 were significantly enhanced, but tumor necrosis factor alpha, NFKB1 (p50 and its precursor, p105), neurotrophin-3, Bcl-2-associated X protein, calpain, caspase 12, caspase 9, and caspase 3 were significantly suppressed in DOX-treated mice under oral treatment with the herbal formula B307. CONCLUSION: Our results revealed that oral treatment with the herbal formula B307 may provide cardioprotection in DOX-treated mice via suppressing oxidative stress, inflammation, and apoptosis in heart tissue. We believe that the herbal formula B307 may be developed as a potential alternative treatment for cancer patients under DOX treatment.

19.
Drug Des Devel Ther ; 9: 887-900, 2015.
Article in English | MEDLINE | ID: mdl-25733809

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disease characterized by motor dysfunction and early death. Despite years of research, the mechanisms responsible for chronic neurodegeneration of HD remain elusive. Chinese traditional medicines might provide new insights or new therapy for HD. The Chinese herbal formula B401 is a well-known Taiwan-US patent formula and a health supplement for promoting blood circulation and enhancing brain function. This study aimed to elucidate the neuroprotective effects of the Chinese herbal formula B401 on the syndrome of HD. Then, we compared the life span and body weight of R6/2 HD mice with and without oral B401 treatment. The ameliorative effects of B401 on the symptom of HD mice were investigated through behavior tests. Expressions of proteins for neuroprotection, angiogenesis, and inflammation in the brain tissue of R6/2 HD mice were compared by using immunostaining and Western blotting techniques. Our study in vitro showed that viabilities of glutamate-treated SH-SY5Y cells were significantly increased under B401 treatment. Our results in vivo showed that duration of survival was increased, body weight loss was reduced, and motor ability was improved in R6/2 HD mice under oral B401 treatment. Subcutaneous microcirculation was enhanced in 3-month R6/2 HD mice under intraperitoneal B401 injections as observed by using moorFLPI laser Doppler imager. Atrophy of cerebrum, midbrain, and cerebellum in 3-month R6/2 HD mice under oral B401 treatment was alleviated as observed by utilizing magnetic resonance imaging. Evidence from immunostaining and Western blotting analysis showed that expressions of mutant huntingtin and tumor necrosis factor-alpha were reduced, while expressions of brain-derived neurotrophic factor and vascular endothelial growth factor were enhanced in the brain tissue of 2-month R6/2 HD mice under oral B401 treatment. We suggest that the herbal formula B401 can be developed as a medical supplement for ameliorating neurodegenerative diseases of HD via reducing mutant huntingtin aggregation and excitotoxicity, enhancing neuroprotection and angiogenesis, and alleviating inflammation in the brain.


Subject(s)
Angiogenesis Inducing Agents/therapeutic use , Brain/blood supply , Brain/drug effects , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Huntington Disease/drug therapy , Neuroprotective Agents/therapeutic use , Angiogenesis Inducing Agents/administration & dosage , Angiogenesis Inducing Agents/chemistry , Animals , Brain/pathology , Cell Line, Tumor , Cell Survival/drug effects , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/chemistry , Humans , Huntington Disease/pathology , Injections, Intraperitoneal , Mice , Mice, Transgenic , Neovascularization, Pathologic/drug therapy , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry
20.
Ergonomics ; 57(9): 1337-52, 2014.
Article in English | MEDLINE | ID: mdl-25000949

ABSTRACT

The corrective reaction time (tcr) is an essential motor property when modelling hand control movements. Many studies designed experiments to estimate tcr, but reported only group means with inconsistent definitions. This study proposes an alternative methodology using Drury's (1994) intermittent illumination model. A total of 24 participants performed circular tracking movements under five levels of visual information delay using a modified monitor in a darkened room. Measured movement speeds and the manipulated delays were used with the model to estimate tcr of individuals and test effects of gender and path width. The results showed excellent model fits and demonstrated individual differences of tcr, which was 273 ms on average and ranged from 87 to 441 ms. The wide range of tcr values was due to significant effects of gender and path width. Male participants required shorter tcr compared to female participants, especially for narrow path widths. PRACTITIONER SUMMARY: This study reports the corrective reaction time (tcr) of individuals using a novel methodology. The estimated tcr ranged from 87 to 441 ms, helping model hand control movements, such as aiming and tracking. The methodology can be continuously applied to study tcr under conditions with various performers and movements.


Subject(s)
Hand/physiology , Models, Theoretical , Movement , Photic Stimulation/methods , Reaction Time , Adult , Female , Humans , Lighting , Male , Pattern Recognition, Visual , Sex Factors , Task Performance and Analysis , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...