Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38670815

ABSTRACT

This study investigated antimicrobial resistance in Salmonella enterica serovar Choleraesuis (S. Choleraesuis) isolates from diseased pigs in Taiwan (2015-2020). Among 272 isolates, florfenicol (96.7%), enrofloxacin (96.3%), doxycycline (91.2%), gentamicin (84.6%), and tiamulin (80.5%) exhibited high resistance. 99.3% of the isolates were resistant to at least one antibiotic, and 97.8% of the isolates were multidrug resistant. This study illustrated that S. Choleraesuis isolates exhibited high resistance to antimicrobials currently used in the Taiwanese swine industry.

2.
Vet Q ; 44(1): 1-13, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38688482

ABSTRACT

Actinobacillus pleuropneumoniae infection causes a high mortality rate in porcine animals. Antimicrobial resistance poses global threats to public health. The current study aimed to determine the antimicrobial susceptibilities and probe the resistome of A. pleuropneumoniae in Taiwan. Herein, 133 isolates were retrospectively collected; upon initial screening, 38 samples were subjected to next-generation sequencing (NGS). Over the period 2017-2022, the lowest frequencies of resistant isolates were found for ceftiofur, cephalexin, cephalothin, and enrofloxacin, while the highest frequencies of resistant isolates were found for oxytetracycline, streptomycin, doxycycline, ampicillin, amoxicillin, kanamycin, and florfenicol. Furthermore, most isolates (71.4%) showed multiple drug resistance. NGS-based resistome analysis revealed aminoglycoside- and tetracycline-related genes at the highest prevalence, followed by genes related to beta-lactam, sulfamethoxazole, florphenicol, and macrolide. A plasmid replicon (repUS47) and insertion sequences (IS10R and ISVAp11) were identified in resistant isolates. Notably, the multiple resistance roles of the insertion sequence IS10R were widely proposed in human medicine; however, this is the first time IS10R has been reported in veterinary medicine. Concordance analysis revealed a high consistency of phenotypic and genotypic susceptibility to florphenicol, tilmicosin, doxycycline, and oxytetracycline. The current study reports the antimicrobial characterization of A. pleuropneumoniae for the first time in Taiwan using NGS.


Subject(s)
Actinobacillus Infections , Actinobacillus pleuropneumoniae , Anti-Bacterial Agents , High-Throughput Nucleotide Sequencing , Microbial Sensitivity Tests , Swine Diseases , Actinobacillus pleuropneumoniae/drug effects , Actinobacillus pleuropneumoniae/genetics , Taiwan/epidemiology , Anti-Bacterial Agents/pharmacology , Animals , Swine Diseases/microbiology , Swine Diseases/epidemiology , Swine , Actinobacillus Infections/veterinary , Actinobacillus Infections/microbiology , Retrospective Studies , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics
3.
Life (Basel) ; 13(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36983998

ABSTRACT

Two variants of porcine reproductive and respiratory syndrome virus (PRRSV), PRRSV 1 and PRRSV 2, have caused abortion in pregnant sows and respiratory distress in nursery pigs worldwide. PRRSV 2 has been thoroughly researched in Taiwan since 1993; however, the first case of PRRSV 1 was not reported until late 2018. To decipher the genetic characteristics of PRRSV 1 in Taiwan, open reading frame 5 (ORF5) genes of PRRSV 1 strains collected from 11 individual pig farms in 2019-2020 were successfully sequenced. All Taiwanese ORF5 sequences were closely related to Spanish-like PRRSV strains, which are considered to share a common evolutionary origin with the strain used for the PRRSV 1 vaccine. Analyses of amino acid (aa) and non-synonymous substitutions showed that genetic variations resulted in numerously specific codon mutations scattered across the neutralizing epitopes within the ORF5 gene. The PRRSV 1 challenge experiment disclosed the pathogenetic capability of the NPUST2789 isolate in nursery pigs. These findings provide comprehensive knowledge of the molecular diversity of the PRRSV 1 variant in local Taiwanese fields and facilitate the development of suitable immunization programs against this disease.

4.
Virus Evol ; 7(2): veab096, 2021.
Article in English | MEDLINE | ID: mdl-34858636

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a highly transmissible intestinal pathogen that causes mild to severe clinical symptoms, such as anorexia, vomiting, and watery diarrhea in pigs. By comparing the genetic sequences of the spike glycoprotein between historical and current Taiwanese PDCoV strains, we identified a novel PDCoV variant that displaced the PDCoV responsible for the 2015 epidemic. This PDCoV variant belongs to a young population within the US lineage, and infected pigs carry high concentrations of the virus. It also has several critical point mutations and an amino acid insertion at position 52 that may enhance the affinity between the B-cell epitopes located in the N-terminal domain with its complementarity regions, consequently facilitating binding or penetration between the fusion peptide and cellular membrane. Furthermore, viral protein structure prediction demonstrated that these amino acid changes may change the ability of the virus to bind to the receptor, which may consequently alter virus infectivity. Our results hence suggest the emergence of new PDCoV strains in Taiwan with the potential for greater transmission and pathogenesis.

5.
Viruses ; 13(7)2021 07 11.
Article in English | MEDLINE | ID: mdl-34372544

ABSTRACT

Porcine deltacoronavirus (PDCoV), a highly transmissible intestinal pathogen, causes mild to severe clinical symptoms, such as anorexia, vomiting and watery diarrhea, in piglets and/or sows. Since the first report of PDCoV infection in Hong Kong in 2012, the virus has readily disseminated to North America and several countries in Asia. However, to date, no unified phylogenetic classification system has been developed. To fill this gap, we classified historical PDCoV reference strains into two major genogroups (G-I and G-II) and three subgroups (G-II-a, G-II-b and G-II-c). In addition, no genetic research on the whole PDCoV genome or spike gene has been conducted on isolates from Taiwan so far. To delineate the genetic characteristics of Taiwanese PDCoV, we performed whole-genome sequencing to decode the viral sequence. The PDCoV/104-553/TW-2015 strain is closely related to the G-II-b group, which is mainly composed of PDCoV variants from China. Additionally, various mutations in the Taiwanese PDCoV (104-553/TW-2015) strain might be linked to the probability of recombination with other genogroups of PDCoVs or other porcine coronaviruses. These results represent a pioneering phylogenetic characterization of the whole genome of a PDCoV strain isolated in Taiwan in 2015 and will potentially facilitate the development of applicable preventive strategies against this problematic virus.


Subject(s)
Deltacoronavirus/classification , Deltacoronavirus/genetics , Swine/virology , Animals , Coronavirus/genetics , Coronavirus Infections/virology , Diarrhea/genetics , Diarrhea/virology , Feces/virology , Phylogeny , Swine Diseases/virology , Taiwan , Whole Genome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...