Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 15272, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26497088

ABSTRACT

Ectopic calcification is associated with various human diseases, including atherosclerosis, cancer, chronic kidney disease, and diabetes mellitus. Although mineral nanoparticles have been detected in calcified blood vessels, the nature and role of these particles in the human body remain unclear. Here we show for the first time that human kidney tissues obtained from end-stage chronic kidney disease or renal cancer patients contain round, multilamellar mineral particles of 50 to 1,500 nm, whereas no particles are observed in healthy controls. The mineral particles are found mainly in the extracellular matrix surrounding the convoluted tubules, collecting ducts and loops of Henle as well as within the cytoplasm of tubule-delineating cells, and consist of polycrystalline calcium phosphate similar to the mineral found in bones and ectopic calcifications. The kidney mineral nanoparticles contain several serum proteins that inhibit ectopic calcification in body fluids, including albumin, fetuin-A, and apolipoprotein A1. Since the mineralo-organic nanoparticles are found not only within calcified deposits but also in areas devoid of microscopic calcifications, our observations indicate that the nanoparticles may represent precursors of calcification and renal stones in humans.


Subject(s)
Kidney/metabolism , Minerals/metabolism , Nanoparticles , Organic Chemicals/metabolism , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
2.
Nanomedicine (Lond) ; 10(24): 3519-35, 2015.
Article in English | MEDLINE | ID: mdl-26429230

ABSTRACT

AIMS: Mineralo-organic nanoparticles (NPs) detected in biological fluids have been described as precursors of physiological and pathological calcifications in the body. Our main objective was to examine the early stages of mineral NP formation in body fluids. MATERIALS & METHODS: A nanomaterial approach based on atomic force microscopy, dynamic light scattering, electron microscopy and spectroscopy was used. RESULTS: The mineral particles, which contain the serum proteins albumin and fetuin-A, initially precipitate in the form of round amorphous NPs that gradually grow in size, aggregate and coalesce to form crystalline mineral films similar to the structures observed in calcified human arteries. CONCLUSION: Our study reveals the early stages of particle formation and provides a platform to analyze the role(s) of mineralo-organic NPs in human tissues.


Subject(s)
Biofilms/drug effects , Nanoparticles/chemistry , Serum/chemistry , Biofilms/growth & development , Body Fluids/drug effects , Humans , Microscopy, Electron, Transmission , Minerals/chemistry , Minerals/therapeutic use , Nanoparticles/therapeutic use , Nanoparticles/ultrastructure , Organic Chemicals/chemistry , Organic Chemicals/therapeutic use
3.
J Nanosci Nanotechnol ; 9(7): 4008-15, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19916401

ABSTRACT

Transparent conductive thin-films of aluminum-doped zinc oxide (AZO) were deposited on STN-glass substrates by an asymmetric bipolar pulsed DC (ABPDC) reactive magnetron sputtering system. Two different alloys, Zn-1.6 wt% Al and Zn-3.0 wt% Al, were used as the sputtering targets. The films consist of columnar grains with a preferred orientation of c-axis. Strong crystal distortion and high density stacking faults were observed in high resolution TEM micrographs. The full-width at half-maximum (FWHM) of the (002) rocking curve has a close relationship with the resistivity of the films; the smaller the FWHM, the lower the resistivity. The lowest resistivity of 7.0 x 10(-4) omega-cm was obtained from the film deposited with Zn-1.6 wt% Al target at 200 degrees C.

SELECTION OF CITATIONS
SEARCH DETAIL
...