Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36502029

ABSTRACT

Over recent years, with the advances in image recognition technology for deep learning, researchers have devoted continued efforts toward importing anomaly detection technology into the production line of automatic optical detection. Although unsupervised learning helps overcome the high costs associated with labeling, the accuracy of anomaly detection still needs to be improved. Accordingly, this paper proposes a novel deep learning model for anomaly detection to overcome this bottleneck. Leveraging a powerful pre-trained feature extractor and the skip connection, the proposed method achieves better feature extraction and image reconstructing capabilities. Results reveal that the areas under the curve (AUC) for the proposed method are higher than those of previous anomaly detection models for 16 out of 17 categories. This indicates that the proposed method can realize the most appropriate adjustments to the needs of production lines in order to maximize economic benefits.


Subject(s)
Industry , Technology , Area Under Curve , Recognition, Psychology , Records
2.
Sensors (Basel) ; 20(12)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545489

ABSTRACT

Recently, researchers have been studying methods to introduce deep learning into automated optical inspection (AOI) systems to reduce labor costs. However, the integration of deep learning in the industry may encounter major challenges such as sample imbalance (defective products that only account for a small proportion). Therefore, in this study, an anomaly detection neural network, dual auto-encoder generative adversarial network (DAGAN), was developed to solve the problem of sample imbalance. With skip-connection and dual auto-encoder architecture, the proposed method exhibited excellent image reconstruction ability and training stability. Three datasets, namely public industrial detection training set, MVTec AD, with mobile phone screen glass and wood defect detection datasets, were used to verify the inspection ability of DAGAN. In addition, training with a limited amount of data was proposed to verify its detection ability. The results demonstrated that the areas under the curve (AUCs) of DAGAN were better than previous generative adversarial network-based anomaly detection models in 13 out of 17 categories in these datasets, especially in categories with high variability or noise. The maximum AUC improvement was 0.250 (toothbrush). Moreover, the proposed method exhibited better detection ability than the U-Net auto-encoder, which indicates the function of discriminator in this application. Furthermore, the proposed method had a high level of AUCs when using only a small amount of training data. DAGAN can significantly reduce the time and cost of collecting and labeling data when it is applied to industrial detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...