Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Exp Anim ; 73(3): 336-346, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38508727

ABSTRACT

Transient receptor potential vanilloid 1 (TRPV1), a ligand-gated cation channel, is a receptor for vanilloids on sensory neurons and is also activated by capsaicin, heat, protons, arachidonic acid metabolites, and inflammatory mediators on neuronal or non-neuronal cells. However, the role of the TRPV1 receptor in pro-inflammatory cytokine secretion and its potential regulatory mechanisms in lipopolysaccharide (LPS)-induced inflammation has yet to be entirely understood. To investigate the role and regulatory mechanism of the TRPV1 receptor in regulating LPS-induced inflammatory responses, bone marrow-derived macrophages (BMDMs) harvested from wild-type (WT) and TRPV1 deficient (Trpv1-/-) mice were used as the cell model. In WT BMDMs, LPS induced an increase in the levels of tumor necrosis factor-α, IL-1ß, inducible nitric oxide synthase, and nitric oxide, which were attenuated in Trpv1-/- BMDMs. Additionally, the phosphorylation of inhibitor of nuclear factor kappa-Bα and mitogen-activated protein kinases, as well as the translocation of nuclear factor kappa-B and activator protein 1, were all decreased in LPS-treated Trpv1-/- BMDMs. Immunoprecipitation assay revealed that LPS treatment increased the formation of TRPV1-Toll-like receptor 4 (TLR4)-cluster of differentiation 14 (CD14) complex in WT BMDMs. Genetic deletion of TRPV1 in BMDMs impaired the LPS-triggered immune-complex formation of TLR4, myeloid differentiation protein 88, and interleukin-1 receptor-associated kinase, all of which are essential regulators in LPS-induced activation of the TLR4 signaling pathway. Moreover, genetic deletion of TRPV1 prevented the LPS-induced lethality and pro-inflammatory production in mice. In conclusion, the TRPV1 receptor may positively regulate the LPS-mediated inflammatory responses in macrophages by increasing the interaction with the TLR4-CD14 complex and activating the downstream signaling cascade.


Subject(s)
Inflammation , Lipopolysaccharide Receptors , Lipopolysaccharides , Macrophages , Signal Transduction , TRPV Cation Channels , Toll-Like Receptor 4 , Animals , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/physiology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/physiology , Macrophages/metabolism , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharide Receptors/genetics , Inflammation/metabolism , Inflammation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Male
2.
Vet Sci ; 10(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37756061

ABSTRACT

This study was conducted to determine the optimal doses and minimum effective concentrations (MECs) of tricaine methanesulfonate (MS-222) in marketable-size Asian seabass reared at two temperatures (22 and 28 °C). Serum biochemical parameters, pharmacokinetics, and tissue distributions of MS-222 following immersion at the determined optimal doses were also evaluated in order to delineate possible mechanisms dictating the temperature difference. The definition of optimal dose is set as the dose when fish attain stage III anesthesia within 5 min, sustain this stage for 3 min, and re-attain equilibrium within 5 min. The MEC is the fish serum MS-222 concentration when stage III anesthesia is reached. The results showed that water temperature exerted no or minimal impact on the designated parameters. The optimal doses at 22 and 28 °C were 140 and 150 µg/mL, while the MECs were 70.48 and 78.27 µg/mL, respectively. Fish exposed to the optimal doses of MS-222 had significantly elevated blood concentrations of lactate, glucose, calcium, magnesium, and sodium, while the blood pH was significantly decreased. The fish eliminated MS-222 faster at 28 °C than at 22 °C, with serum half-lives of 18.43 and 37.01 h, respectively. Tissue-specific distribution patterns were evident. Irrespective of water temperature, MS-222 peaked at 5 min for the brain and gill but peaked slightly later at 10-20 min for the liver and kidney. Most tissues exhibit a gradual decline of drug concentration except for the gill, which was maintained at a steady level. Muscle is the least perfused tissue with the lowest drug concentration throughout the 90 min period. This study provided physiological and pharmacokinetic evidence contributing to a better understanding of the actions of MS-222 in Asian seabass at different temperatures.

3.
Life (Basel) ; 11(7)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34357092

ABSTRACT

High blood pressure is a major risk factor of cerebro-cardiovascular outcomes. Blood pressure is partly regulated by the autonomic nervous system and its reflex functions; therefore, we hypothesized that pharmacological intervention in the brainstem that can regulate blood pressure could be a novel therapeutic strategy to control hypertension. We infused a group II metabotropic glutamate receptor (mGluR) antagonist (LY341495, 0.40 µg/day), using a mini-osmotic pump, into the dorsal medulla oblongata in young spontaneously hypertensive rats (SHRs), as this area is adjacent to the nucleus tractus solitarius (NTS), of which the neurons are involved in baroreflex pathways with glutamatergic transmission. Blood pressure was recorded for conscious rats with the tail cuff method. A 6-week antagonist treatment from 6 to 12 weeks of age slightly but significantly increased systolic blood pressure by >30 mmHg, compared to that in SHRs without treatment. Moreover, the effect continued even 3 weeks after the treatment ended, and concurred with an increase in blood catecholamine concentration. However, heart rate variability analysis revealed that LY341495 treatment had little effect on autonomic activity. Meanwhile, mRNA expression level of mGluR subtype 2, but not subtype 3 in the brainstem was significantly enhanced by the antagonist treatment in SHRs, possibly compensating the lack of mGluR signaling. In conclusion, mGluR2 signaling in the dorsal brainstem is crucial for preventing the worsening of hypertension over a relatively long period in SHRs, through a mechanism of catecholamine secretion. This may be a specific drug target for hypertension therapy.

4.
PLoS One ; 16(5): e0251495, 2021.
Article in English | MEDLINE | ID: mdl-34010316

ABSTRACT

Baroreflex dysfunction is partly implicated in hypertension and one responsible region is the dorsal medulla oblongata including the nucleus tractus solitarius (NTS). NTS neurons receive and project glutamatergic inputs to subsequently regulate blood pressure, while G-protein-coupled metabotropic glutamate receptors (mGluRs) play a modulatory role for glutamatergic transmission in baroreflex pathways. Stimulating group II mGluR subtype 2 and 3 (mGluR2/3) in the brainstem can decrease blood pressure and sympathetic nervous activity. Here, we hypothesized that the chronic stimulation of mGluR2/3 in the dorsal medulla oblongata can alleviate hypertensive development via the modulation of autonomic nervous activity in young, spontaneously hypertensive rats (SHRs). Compared with that in the sham control group, chronic LY379268 application (mGluR2/3 agonist; 0.40 µg/day) to the dorsal medulla oblongata for 6 weeks reduced the progression of hypertension in 6-week-old SHRs as indicated by the 40 mmHg reduction in systolic blood pressure and promoted their parasympathetic nervous activity as evidenced by the heart rate variability. No differences in blood catecholamine levels or any echocardiographic indices were found between the two groups. The improvement of reflex bradycardia, a baroreflex function, appeared after chronic LY379268 application. The mRNA expression level of mGluR2, but not mGluR3, in the dorsal medulla oblongata was substantially reduced in SHRs compared to that of the control strain. In conclusion, mGluR2/3 signaling might be responsible for hypertension development in SHRs, and modulating mGluR2/3 expression/stimulation in the dorsal brainstem could be a novel therapeutic strategy for hypertension via increasing the parasympathetic activity.


Subject(s)
Amino Acids/therapeutic use , Antihypertensive Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Hypertension/drug therapy , Medulla Oblongata/drug effects , Receptors, Metabotropic Glutamate/agonists , Amino Acids/pharmacology , Animals , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Hypertension/physiopathology , Male , Medulla Oblongata/physiopathology , Rats, Inbred SHR
5.
Exp Anim ; 69(2): 161-167, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-31735765

ABSTRACT

Environmental enrichment (EE) can reduce anxiety and stress in experimental animals, while little is known about the influence on autonomic nervous activity especially in disease animal models. Diabetes mellitus (DM) is associated with cardiovascular autonomic dysfunction, which can be characterized by a higher resting heart rate and a lower heart rate variability (HRV). We hypothesized that EE can enhance parasympathetic nervous activity while reducing disease progression in type 2 diabetic mice. A telemetry transmitter was implanted in NSY mice to continuously record electrocardiograms (ECG). Animals were kept in a cage with or without a nest box as EE. The autonomic nervous activity was evaluated using power spectral analysis of HRV. Four weeks of EE could increase high frequency (HF) power, but no change was observed in the absence of EE. Although animals showed impaired glucose tolerance at 48 weeks of age regardless of EE, a worsen case was observed in control. These results indicate that EE can be necessary for long-term housing of experimental animals and may reduce the risk of impaired glucose tolerance in NSY mice by enhancing parasympathetic nervous activity. In future, it is demanded whether increasing parasympathetic nervous activity, whatever the method is, can prevent diabetes from worsening.


Subject(s)
Autonomic Nervous System/physiology , Environment , Animals , Male , Mice , Mice, Inbred Strains
SELECTION OF CITATIONS
SEARCH DETAIL
...