Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(50): eadj7052, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38091400

ABSTRACT

Marine subsidies are vital for terrestrial ecosystems, especially low-productivity islands. However, the impact of losing these subsidies on the terrestrial food web can be difficult to predict. We analyzed 23 years of survey data from Orchid Island to assess the consequences of the abrupt loss of an important marine subsidy. After climate-driven beach erosion and predator exclusion efforts resulted in the abrupt loss of sea turtle eggs from the terrestrial food web, predatory snakes altered their foraging habitats. This increased predation on other reptile species in inland areas, resulting in population declines in most terrestrial reptile species. Comparisons with sea turtle-free locations where lizard populations remained stable supported these findings. Our study emphasizes the cascading effects of generalist predators and the unintended consequences of single-species conservation, highlighting the importance of understanding species interconnectedness and considering potential ripple effects in marine-dependent insular ecosystems.


Subject(s)
Lizards , Turtles , Animals , Ecosystem , Food Chain , Snakes , Predatory Behavior
2.
Proc Biol Sci ; 288(1944): 20202631, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33563122

ABSTRACT

Ecologists have long theorized that apex predators stabilize trophic systems by exerting a net protective effect on the basal resource of a food web. Although experimental and observational studies have borne this out, it is not always clear what behavioural mechanisms among the trophically connected species are responsible for this stability. Fear of intraguild predation is commonly identified as one such mechanism in models and mesocosm studies, but empirical evidence in natural systems remains limited, as the complexity of many trophic systems renders detailed behavioural studies of species interactions challenging. Here, we combine long-term field observations of a trophic system in nature with experimental behavioural studies of how all the species in this system interact, in both pairs and groups. The results demonstrate how an abundant, sessile and palatable prey item (sea turtle eggs, Chelonia mydas) survives when faced by three potential predators that all readily eat eggs: an apex predator (the stink ratsnake, Elaphe carinata) and two mesopredators (the brown rat, Rattus norvegicus, and kukri snake, Oligodon formosanus). Our results detail how fear of intraguild predation, conspecific cannibalism, habitat structure and territorial behaviour among these species interact in a complex fashion that results in high egg survival.


Subject(s)
Turtles , Animals , Cannibalism , Fear , Food Chain , Predatory Behavior , Rats
3.
PLoS One ; 16(2): e0247009, 2021.
Article in English | MEDLINE | ID: mdl-33577597

ABSTRACT

Dehydration and hypersalinity challenge non-marine organisms crossing the ocean. The rate of water loss and saltwater tolerance thus determine the ability to disperse over sea and further influence species distribution. Surprisingly, this association between physiology and ecology is rarely investigated in terrestrial vertebrates. Here we conducted immersion experiments to individuals and eggs of six lizard species differently distributed across Taiwan and the adjacent islands to understand if the physiological responses reflect the geographical distribution. We found that Plestiodon elegans had the highest rate of water loss and the lowest saltwater tolerance, whereas Eutropis longicaudata and E. multifasciata showed the lowest rate of water loss and the highest saltwater tolerance. Diploderma swinhonis, Hemidactylus frenatus, and Anolis sagrei had medium measurements. For the eggs, only the rigid-shelled eggs of H. frenatus were incubated successfully after treatments. While, the parchment-shelled eggs of E. longicaudata and D. swinhonis lost or gained water dramatically in the immersions without any successful incubation. Combined with the historical geology of the islands and the origin areas of each species, the inferences of the results largely explain the current distribution of these lizards across Taiwan and the adjacent islands, pioneerly showing the association between physiological capability and species distribution.


Subject(s)
Lizards/physiology , Salt Tolerance , Animal Distribution , Animals , Oceans and Seas , Species Specificity , Taiwan , Water/metabolism
4.
Sci Adv ; 5(4): eaar5478, 2019 04.
Article in English | MEDLINE | ID: mdl-31032398

ABSTRACT

Phylogenetic analysis has shown that males' propensity to engage in aggressive encounters is associated with females having greater longevity. Here, we confirm the causal link between aggression and reduced longevity by looking at an egg-eating snake (Oligodon formosanus) in which females defend territories in the presence of sea turtle eggs. We monitored aggressiveness and survival at two sites: a control site with a stable supply of turtle eggs, and a second site where we collected data before and after a storm that eroded the beach on which turtles nested, thus leading to a loss of territoriality. We show that territoriality was the driver behind higher injury rates in females. Territorial females also had lower survival and decreased longevity compared with the nonterritorial males, but these differences disappeared when females were not territorial. Our study demonstrates how resource availability can influence the evolution of sex-specific patterns of survival across vertebrates.


Subject(s)
Longevity , Snakes/physiology , Territoriality , Animals , Body Weight , Female , Male , Phylogeny , Sex Factors , Social Behavior , Weight Gain
5.
J Exp Biol ; 221(Pt 24)2018 12 13.
Article in English | MEDLINE | ID: mdl-30352828

ABSTRACT

Terrestrial species, especially non-vagile ones (those unable to fly or swim), cannot cross oceans without exploiting other animals or floating objects. However, the colonisation history of flightless Pachyrhynchus weevils, inferred from genetic data, reveals their ability to travel long distances to colonise remote islands. Here, we used captive-bred Pachyrhynchus jitanasaius to analyse (i) the physiological tolerance of weevils (egg, larva and adult stages) to different levels of salinity; (ii) the survival rate of larvae in a simulated ocean environment in the laboratory; and (iii) the survival rate of larvae in a field experiment in the ocean using fruit of the fish poison tree floating on the Kuroshio current in the Pacific Ocean. We found that the survival rate of larvae in seawater was lower than in fresh water, although if the larvae survived 7 days of immersion in seawater, some emerged as adults in the subsequent rearing process. No adults survived for more than 2 days, regardless of salinity level. After floating separately for 6 days in salt water in the laboratory and in the Kuroshio current, two of 18 larvae survived in the fruit. This study provides the first empirical evidence that P. jitanasaius larvae can survive 'rafting' on ocean currents and that the eggs and larvae of these weevils have the highest probability of crossing the oceanic barrier. This ability may facilitate over-the-sea dispersal of these flightless insects and further shape their distribution and speciation pattern in the Western Pacific islands.


Subject(s)
Animal Distribution , Longevity , Salinity , Weevils/physiology , Animals , Flight, Animal , Fruit , Larva/growth & development , Larva/physiology , Ovum/growth & development , Ovum/physiology , Pacific Ocean , Random Allocation , Water Movements , Weevils/growth & development
6.
Sci Rep ; 6: 22207, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26915464

ABSTRACT

Animals display a great diversity of parental care tactics that ultimately enhance offspring survival, but how such behaviors evolve remains unknown for most systems. Here, we studied the evolution of maternal care, in the form of nest guarding, in a single population of long-tailed sun skink (Eutropis longicaudata) living on Orchid Island (Taiwan). This species typically does not provide protection to its offspring. Using a common garden experiment, we show that maternal care is genetically determined in this population. Through field manipulations, we demonstrate that care provides a significant increase in egg survival on Orchid Island by reducing predation from egg-eating snakes (Oligodon formosanus); this predator is not abundant in other populations of the lizard, which do not display parental care. Finally, using extensive field surveys, we show that the seasonal availability of green sea turtle (Chelonia mydas) nests is the cause for the high abundance of snake predators on Orchid Island, with the snakes consuming lizard eggs when green turtle eggs are not available. Together, these lines of evidence provide the first full demonstration of how predation can trigger the evolution of parental care in a species derived from a non-caring ancestor.


Subject(s)
Parenting , Predatory Behavior , Sexual Behavior, Animal , Animals , Lizards , Snakes
7.
PLoS One ; 9(3): e91777, 2014.
Article in English | MEDLINE | ID: mdl-24614681

ABSTRACT

Conspicuous colouration can evolve as a primary defence mechanism that advertises unprofitability and discourages predatory attacks. Geographic overlap is a primary determinant of whether individual predators encounter, and thus learn to avoid, such aposematic prey. We experimentally tested whether the conspicuous colouration displayed by Old World pachyrhynchid weevils (Pachyrhynchus tobafolius and Kashotonus multipunctatus) deters predation by visual predators (Swinhoe's tree lizard; Agamidae, Japalura swinhonis). During staged encounters, sympatric lizards attacked weevils without conspicuous patterns at higher rates than weevils with intact conspicuous patterns, whereas allopatric lizards attacked weevils with intact patterns at higher rates than sympatric lizards. Sympatric lizards also attacked masked weevils at lower rates, suggesting that other attributes of the weevils (size/shape/smell) also facilitate recognition. Allopatric lizards rapidly learned to avoid weevils after only a single encounter, and maintained aversive behaviours for more than three weeks. The imperfect ability of visual predators to recognize potential prey as unpalatable, both in the presence and absence of the aposematic signal, may help explain how diverse forms of mimicry exploit the predator's visual system to deter predation.


Subject(s)
Geography , Invertebrates/physiology , Lizards/physiology , Pigmentation , Predatory Behavior , Animals , Memory , Sympatry
SELECTION OF CITATIONS
SEARCH DETAIL
...