Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chin J Physiol ; 65(1): 21-29, 2022.
Article in English | MEDLINE | ID: mdl-35229749

ABSTRACT

Mesenchymal stem cells (MSCs) have been successfully cultured and proliferated in vitro and can differentiate into a variety of specific cell types, such as adipocytes or osteocytes, through chemical stimulation. One of the major applications of MSCs is in regenerative medicine research. MSCs can be collected from many adult tissues. In this experiment, an 8-week-old expresses green fluorescent protein (EGFP) transgenic mouse, FVB/NCrl-Tg(Pgk1-EGFP)01Narl, was used to obtain adipose-derived stem cells (ADSCs) from abdominal adipose tissue and bone marrow stem cells (BMSCs) from femur bone marrow. We compared the differences in the growth rate and differentiation ability of ADSCs and BMSCs. The growth curves of different generations (P1 and P3) of the stem cells showed that the proliferation rate of ADSCs was significantly higher than that of BMSCs. The purity of stem cells was measured by the number of colony-forming unit fibroblast. The results show that the number of colonies of ADSCs at different generations (P1 and P3) was significantly higher than that of BMSCs and that the purity of ADSCs was greater than that of BMSCs. Comparing the ability of ADSCs and BMSCs to induce osteogenic differentiation and the expression of Runx2 and Opn genes, the results show that ADSCs had a higher rate of osteogenic differentiation than BMSCs. In summary, mouse ADSCs display similar osteogenic differentiation ability to BMSCs but have a better capacity than BMSCs in terms of stem cell purity and cell proliferation in vitro.


Subject(s)
Bone Marrow Cells , Osteogenesis , Adipose Tissue/metabolism , Animals , Cell Differentiation , Cells, Cultured , Mice , Osteogenesis/genetics , Stem Cells
2.
Nat Commun ; 12(1): 3430, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34078895

ABSTRACT

The limited availability of nasopharyngeal carcinoma-related progression biomarker array kits that offer physicians comprehensive information is disadvantageous for monitoring cancer progression. To develop a biomarker array kit, systematic identification and differentiation of a large number of distinct molecular surface-enhanced Raman scattering (SERS) reporters with high spectral temporal resolution is a major challenge. To address this unmet need, we use the chemistry of metal carbonyls to construct a series of unique SERS reporters with the potential to provide logical and highly multiplex information during testing. In this study, we report that geometric control over metal carbonyls on nanotags can produce 14 distinct barcodes that can be decoded unambiguously using commercial Raman spectroscopy. These metal carbonyl nanobarcodes are tested on human blood samples and show strong sensitivity (0.07 ng/mL limit of detection, average CV of 6.1% and >92% degree of recovery) and multiplexing capabilities for MMPs.


Subject(s)
Biosensing Techniques/methods , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Neoplasms/diagnosis , Spectrum Analysis, Raman , Biomarkers, Tumor/blood , Biomarkers, Tumor/chemistry , Disease Progression , Matrix Metalloproteinases/blood , Matrix Metalloproteinases/chemistry , Metal Nanoparticles/chemistry , Nanogels/chemistry , Nasopharyngeal Carcinoma/blood , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/blood , Nasopharyngeal Neoplasms/pathology , Organometallic Compounds/chemistry , Sensitivity and Specificity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...