Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
Phys Rev Lett ; 133(12): 128001, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39373417

ABSTRACT

In this Letter, we unveil an eccentric superradiance phenomenon in molecular aggregates coupled to surface plasmon polaritons. Through the quantization of electromagnetic fields in media, we demonstrate that superradiance can be significantly enhanced by polaritons and its behavior distinguishably surpasses the Dick's N scaling law. To understand the mechanism of this anomalous phenomenon, we derive an analytical expression of the superradiance rate, which is general for molecular aggregates in arbitrary dispersive and absorbing media. Furthermore, we demonstrate the importance of intermolecular distance for this extraordinary superradiance.

2.
J Phys Chem Lett ; 15(29): 7403-7410, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38995883

ABSTRACT

Catalyzing reactions effectively by vacuum fluctuations of electromagnetic fields is a significant challenge within the realm of chemistry. As opposed to most studies based on vibrational strong coupling, we introduce an innovative catalytic mechanism driven by weakly coupled polaritonic fields. Through the amalgamation of macroscopic quantum electrodynamics (QED) principles with Marcus electron transfer (ET) theory, we predict that ET reaction rates can be precisely modulated across a wide dynamic range by controlling the size and structure of nanocavities. Compared to QED-driven radiative ET rates in free space, plasmonic cavities induce substantial rate enhancements spanning the range from 103- to 10-fold. By contrast, Fabry-Perot cavities engender rate suppression spanning the range from 10-2- to 10-1-fold. This work overcomes the necessity of using strong light-matter interactions in QED chemistry, opening up a new era of manipulating QED-based chemical reactions in a wide dynamic range.

3.
J Chem Phys ; 160(14)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38597310

ABSTRACT

Born-Huang expansion is the cornerstone for studying potential energy surfaces and non-adiabatic couplings (NACs) in molecular systems. However, the traditional approach is insufficient to describe the molecular system, which strongly interacts with quantum light. Inspired by the work by Schäfer et al., we develop the generalized Born-Huang expansion theory within a macroscopic quantum electrodynamics (QED) framework. The theory we present allows us to describe electromagnetic vacuum fluctuations in dielectric media and incorporate the effects of dressed photons (or polaritons) into NACs. With the help of the generalized Born-Huang expansion, we clearly classify electronic nuclear NACs, polaritonic nuclear NACs, and polaritonic electronic NACs. Furthermore, to demonstrate the advantage of the macroscopic QED framework, we estimate polaritonic electronic NACs without any free parameter, such as the effective mode volume, and demonstrate the distance dependence of the polaritonic electronic NACs in a silver planar system. In addition, we take a hydrogen atom in free space as an example and derive spontaneous emission rates from photonic electronic NACs (polaritonic electronic NACs are reduced to photonic electronic NACs). We believe that this work not only provides an avenue for the theoretical exploration of NACs in a nucleus-electron-polariton coupled system but also offers a more comprehensive understanding for molecules coupled with quantum light.

4.
J Chem Phys ; 160(11)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38501476

ABSTRACT

Cavity quantum electrodynamics (CQED) and its extensions are widely used for the description of exciton-polariton systems. However, the exciton-polariton models based on CQED vary greatly within different contexts. One of the most significant discrepancies among these CQED models is whether one should include direct intermolecular interactions in the CQED Hamiltonian. To answer this question, in this article, we derive an effective dissipative CQED model including free-space dipole-dipole interactions (CQED-DDI) from a microscopic Hamiltonian based on macroscopic quantum electrodynamics. Dissipative CQED-DDI successfully captures the nature of vacuum fluctuations in dielectric media and separates them into free-space effects and dielectric-induced effects. The former include spontaneous emissions, dephasings, and dipole-dipole interactions in free space; the latter include exciton-polariton interactions and photonic losses due to dielectric media. We apply dissipative CQED-DDI to investigate the exciton-polariton dynamics (the population dynamics of molecules above a plasmonic surface) and compare the results with those based on the methods proposed by several previous studies. We find that direct intermolecular interactions are a crucial element when employing CQED-like models to study exciton-polariton systems involving multiple molecules.

5.
Chem Asian J ; 19(2): e202300940, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38100510

ABSTRACT

Circularly polarized luminescence (CPL) materials are promising candidates for future display technology. However, such highly efficient emitters suffer from the issues of difficult chiral separation and low photoluminescence quantum yield (PLQY). In this work, the chiral 4,4'-biphenanthrene-3,3'-diol (BIPOL) unit was introduced into a thermally activated delayed fluorescence (TADF) framework for the first time. We presented two series of enantiomers, R/S-o-DCzBPNCN and R/S-p-DCzBPNCN, and the synthesis of enantiopure BIPOL can be prepared via normal column chromatography. Notably, o-DCzBPNCN showed narrow singlet-triplet gap of 0.05 eV, efficient TADF, and high PLQYs of 82 % in doped films. In addition, R/S-o-DCzBPNCN exhibited high luminescence dissymmetry factor (gPL ) values of -1.94×10-2 /+1.91×10-2 in doped films. The strategy of BIPOL introduction offers a new approach to organic emitters with stereospecific synthesis, TADF, and chiroptical properties.

6.
J Chem Phys ; 159(15)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37843060

ABSTRACT

Exciton transport in extended molecular systems and how to manipulate such transport in a complex environment are essential to many energy and optical-related applications. We investigate the mechanism of plasmon-coupled exciton transport by using the Pauli master equation approach, combined with kinetic rates derived from macroscopic quantum electrodynamics. Through our theoretical framework, we demonstrate that the presence of a silver nanorod induces significant frequency dependence in the ability of transporting exciton through a molecule chain, indicated by the exciton diffusion coefficient, due to the dispersive nature of the silver dielectric response. Compared with the same system in vacuum, great enhancement (up to a factor of 103) in the diffusion coefficient can be achieved by coupling the resonance energy transfer process to localized surface plasmon polariton modes of the nanorod. Furthermore, our analysis reveals that the diffusion coefficients with the nearest-neighbor coupling approximation are ∼10 times smaller than the results obtained beyond this approximation, emphasizing the significance of long-range coupling in exciton transport influenced by plasmonic nanostructures. This study not only paves the way for exploring practical approaches to study plasmon-coupled exciton transport but also provides crucial insights for the design of innovative plasmon-assisted photovoltaic applications.

7.
J Phys Chem Lett ; 14(25): 5924-5931, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37343274

ABSTRACT

To explore non-adiabatic effects caused by electromagnetic (EM) vacuum fluctuations in molecules, we develop a general theory of internal conversion (IC) in the framework of quantum electrodynamics and propose a new mechanism, "quantum electrodynamic internal conversion" (QED-IC). The theory allows us to compute the rates of the conventional IC and QED-IC processes at the first-principles level. Our simulations manifest that, under experimentally feasible weak light-matter coupling conditions, EM vacuum fluctuations can significantly affect IC rates by an order of magnitude. Moreover, our theory elucidates three key factors in the QED-IC mechanism: the effective mode volume, coupling-weighted normal mode alignment, and molecular rigidity. The theory successfully captures the nucleus-photon interaction in the factor "coupling-weighted normal mode alignment". In addition, we find that molecular rigidity plays a totally different role in conventional IC versus QED-IC rates. Our study provides applicable design principles for exploiting QED effects on IC processes.

8.
J Phys Chem Lett ; 14(9): 2395-2401, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36856331

ABSTRACT

The Huang-Rhys (HR) factor, a dimensionless factor that characterizes electron-phonon (vibronic) coupling, has been extensively employed to investigate a variety of material properties. In the same spirit, we propose a quantity called the polaritonic HR factor to quantitatively describe the effects of (i) light-matter coupling induced by permanent dipoles and (ii) dipole self-energy. The former leads to polaritonic displacements, while the latter is associated with the electronic coupling shift named reorganization dipole self-coupling. In the framework of macroscopic quantum electrodynamics, our theory can evaluate the polaritonic HR factor, reorganization dipole self-coupling, and modified light-matter coupling strength in an arbitrary dielectric environment without free parameters, whose magnitudes are in good agreement with the previous experimental results. We believe that this study provides a useful perspective on understanding and quantifying light-matter interactions in media.

9.
J Chem Phys ; 157(23): 234109, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36550029

ABSTRACT

In this study, based on the theory developed in Paper I, we explore the combined effects of molecular fluorescence and excitation energy transfer in a minimal model-a pair of single-vibration-mode chromophores coupled to surface plasmon polaritons. For the chromophores with zero Huang-Rhys factors and strong couplings to surface plasmon polaritons, we find that the frequencies of Rabi oscillations (the strengths of strong light-matter couplings) are associated with the initial excitation conditions. On the other hand, for the chromophores weakly coupled to surface plasmon polaritons, our numerical calculations together with analytical analysis elaborate on the conditions for the superradiant and subradiant decay behaviors. Moreover, we show that the modified decay rate constants can be explicitly expressed in terms of generalized spectral densities (or dyadic Green's functions), revealing a relationship between photonic environments and the collective effects such as superradiance and subradiance. For the chromophores with nonzero Huang-Rhys factors and strong coupling to surface plasmon polaritons, the effects of molecular vibrations emerge. We demonstrate that the low-frequency vibrational modes do not affect the excited state population dynamics, while the high-frequency vibrational modes can modify either the period of Rabi oscillation (Franck-Condon Rabi oscillation) or the amplitude of excited state population. Our study shows that the collective effects, including superradiance and subradiance, can be controlled via dielectric environments and initial excitation conditions, providing new insights into polariton chemistry and the design of quantum optical devices.

10.
Chem Sci ; 13(44): 12996-13005, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36425506

ABSTRACT

Owing to the high technology maturity of thermally activated delayed fluorescence (TADF) emitter design with a specific molecular shape, extremely high-performance organic light-emitting diodes (OLEDs) have recently been achieved via various doping techniques. Recently, undoped OLEDs have drawn immense attention because of their manufacturing cost reduction and procedure simplification. However, capable materials as host emitters are rare and precious because general fluorophores in high-concentration states suffer from serious aggregation-caused quenching (ACQ) and undergo exciton quenching. In this work, a series of diboron materials, CzDBA, iCzDBA, and tBuCzDBA, is introduced to realize the effect of steric hindrance and the molecular aspect ratio via experimental and theoretical studies. We computed transition electric dipole moment (TEDM) and molecular dynamics (MD) simulations as a proof-of-concept model to investigate the molecular stacking in neat films. It is worth noting that the pure tBuCzDBA film with a high horizontal ratio of 92% is employed to achieve a nondoped OLED with an excellent external quantum efficiency of 26.9%. In addition, we demonstrated the first ultrathin emitting layer (1 nm) TADF device, which exhibited outstanding power efficiency. This molecular design and high-performance devices show the potential of power-saving and economical fabrication for advanced OLEDs.

11.
J Chem Phys ; 157(18): 184107, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36379764

ABSTRACT

In this study, we develop a theory of multichromophoric excitation energy transfer (MC-EET) in the framework of macroscopic quantum electrodynamics. The theory we present is general for studying the interplay between energy transfer and fluorescence in the presence of arbitrary inhomogeneous, dispersive, and absorbing media. The dynamical equations of MC-EET, including energy-transfer kernels and fluorescence kernels, allow us to describe the combined effects of molecular vibrations and photonic environments on excitation energy transfer. To demonstrate the universality of the MC-EET theory, we show that under specific conditions, the MC-EET theory can be converted to three representative theories. First, under the Markov approximation, we derive an explicit Förster-type expression for plasmon-coupled resonance energy transfer [Hsu et al., J. Phys. Chem. Lett. 8, 2357 (2017)] from the MC-EET theory. In addition, the MC-EET theory also provides a parameter-free formula to estimate transition dipole-dipole interactions mediated by photonic environments. Second, we generalize the theory of multichromophoric Förster resonance energy transfer [Jang et al., Phys. Rev. Lett. 92, 218301 (2004)] to include the effects of retardation and dielectric environments. Third, for molecules weakly coupled with photonic modes, the MC-EET theory recovers the previous main result in Chance-Prock-Silbey classical fluorescence theory [Chance et al., J. Chem. Phys. 60, 2744 (1974)]. This study opens a promising direction for exploring light-matter interactions in multichromophoric systems with possible applications in the exciton migration in metal-organic framework materials and organic photovoltaic devices.

12.
J Phys Chem Lett ; 13(41): 9695-9702, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36219782

ABSTRACT

Richard Feynman stated that "The theory behind chemistry is quantum electrodynamics". However, harnessing quantum-electrodynamic (QED) effects to modify chemical reactions is a grand challenge and currently has only been reported in experiments using cavities due to the limitation of strong light-matter coupling. In this article, we demonstrate that QED effects can significantly enhance the rate of electron transfer (ET) by several orders of magnitude in the absence of cavities, which is implicitly supported by experimental reports. To understand how cavity-free QED effects are involved in ET reactions, we incorporate the effect of infinite one-photon states into Marcus theory, derive an explicit expression for the rate of radiative ET, and develop the concept of "electron transfer overlap". Moreover, QED effects may lead to a barrier-free ET reaction whose rate is dependent on the energy-gap power law. This study thus provides new insights into fundamental chemical principles, with promising prospects for QED-based chemical reactions.

13.
J Chem Phys ; 155(13): 134117, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34624977

ABSTRACT

Light-matter coupling strength and optical loss are two key physical quantities in cavity quantum electrodynamics (CQED), and their interplay determines whether light-matter hybrid states can be formed or not in chemical systems. In this study, by using macroscopic quantum electrodynamics (MQED) combined with a pseudomode approach, we present a simple but accurate method, which allows us to quickly estimate the light-matter coupling strength and optical loss without free parameters. Moreover, for a molecular emitter coupled with photonic modes (including cavity modes and plasmon polariton modes), we analytically and numerically prove that the dynamics derived from the MQED-based wavefunction approach is mathematically equivalent to the dynamics governed by the CQED-based Lindblad master equation when the Purcell factor behaves like Lorentzian functions.

14.
J Chem Phys ; 155(7): 074101, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34418923

ABSTRACT

Our previous study [S. Wang et al., J. Chem. Phys. 153, 184102 (2020)] has shown that in a complex dielectric environment, molecular emission power spectra can be expressed as the product of the lineshape function and the electromagnetic environment factor (EEF). In this work, we focus on EEFs in a vacuum-NaCl-silver system and investigate molecular emission power spectra in the strong exciton-polariton coupling regime. A numerical method based on computational electrodynamics is presented to calculate the EEFs of single-molecule emitters in a dispersive and lossy dielectric environment with arbitrary shapes. The EEFs in the far-field region depend on the detector position, emission frequency, and molecular orientation. We quantitatively analyze the asymptotic behavior of the EFFs in the far-field region and qualitatively provide a physical picture. The concept of EEF should be transferable to other types of spectra in a complex dielectric environment. Finally, our study indicates that molecular emission power spectra cannot be simply interpreted by the lineshape function (quantum dynamics of a molecular emitter), and the effect of the EEFs (photon propagation in a dielectric environment) has to be carefully considered.

16.
J Chem Phys ; 153(18): 184102, 2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33187405

ABSTRACT

We study the emission power spectrum of a molecular emitter with multiple vibrational modes in the framework of macroscopic quantum electrodynamics. The theory we present is general for a molecular spontaneous emission spectrum in the presence of arbitrary inhomogeneous, dispersive, and absorbing media. Moreover, the theory shows that the molecular emission power spectra can be decomposed into the electromagnetic environment factor and lineshape function. In order to demonstrate the validity of the theory, we investigate the lineshape function in two limits. In the incoherent limit (single molecules in a vacuum), the lineshape function exactly corresponds to the Franck-Condon principle. In the coherent limit (single molecules strongly coupled with single polaritons or photons) together with the condition of high vibrational frequency, the lineshape function exhibits a Rabi splitting, the spacing of which is exactly the same as the magnitude of exciton-photon coupling estimated by our previous theory [S. Wang et al., J. Chem. Phys. 151, 014105 (2019)]. Finally, we explore the influence of exciton-photon and electron-phonon interactions on the lineshape function of a single molecule in a cavity. The theory shows that the vibronic structure of the lineshape function does not always disappear as the exciton-photon coupling increases, and it is related to the loss of a dielectric environment.

17.
J Phys Chem Lett ; 11(16): 6796-6804, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32787214

ABSTRACT

We investigate the intrinsic characteristics of resonance energy transfer (RET) coupled with localized surface plasmon polaritons (LSPPs) from the perspective of macroscopic quantum electrodynamics. To quantify the effect of LSPPs, we propose a numerical scheme that allows us to accurately calculate the rate of RET between a donor-acceptor pair near a nanoparticle. Our study shows that LSPPs can be used to enhance the RET rate significantly and control its frequency dependence by modifying a core/shell structure, which indicates the possibility of RET rate optimization. Moreover, we systematically explore the angle (distance) dependence of the RET rate and analyze its origin. According to different frequency regimes, the angle dependence of RET is dominated by different mechanisms, such as LSPPs, surface plasmon polaritons (SPPs), and anti-resonance. For the proposed core/shell structure, the characteristic distance of RET coupled with LSPPs (approximately 0.05 emission wavelength) is shorter than that of RET coupled with SPPs (approximately 0.1 emission wavelength), which may provide promising applications in energy science.

18.
J Chem Phys ; 153(4): 044103, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32752664

ABSTRACT

We derive the exact steady-state solutions for the simplest model systems of resonant tunneling and tunneling with destructive quantum interference from the driven Liouville-von Neumann (DLvN) approach. Under the finite-state lead condition (the two electrodes have finite states), we analyze the asymptotic behavior of the steady-state current in the two limits of electronic relaxation. Under the infinite-state lead condition, the steady-state solutions of the two model systems can be cast as Landauer-type current formulas. According to the formulas, we show that the transmission functions near the resonant peak and the antiresonant dip can be significantly influenced by electronic relaxation in the electrodes. Moreover, under intermediate and strong electronic relaxation conditions, we analytically show that the steady-state current of the DLvN approach dramatically deviates from the Landauer current when destructive quantum interference occurs. In the regime of zero electronic relaxation, our results are reduced to the Landauer formula, indicating that the DLvN approach is equivalent to the Landauer approach when the leads have infinite states without any electronic relaxation.

19.
J Phys Chem Lett ; 11(15): 5948-5955, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32619095

ABSTRACT

We investigate the coherent-to-incoherent transition of molecular fluorescence of a chromophore above a silver surface (including bulk and thin-film systems) and explore the distance dependence of fluorescence rate enhancement. In the framework of macroscopic quantum electrodynamics, we generalize our previous theory to include multiple vibrational modes. The present theory can accurately describe quantum dynamics from the coherent limit to the incoherent limit. Moreover, we introduce a new concept Incoherent Index to quantify the degree of quantum coherence and demonstrate that the coherent-to-incoherent transition can be controlled by the dielectric environment and the molecule-silver distance. In addition, our theory indicates that strong molecule-photon (polariton) coupling can be achieved by virtue of small Huang-Rhys factors, large transition dipole moments, and appropriate dielectric material design. The present study provides a new direction for engineering light-matter interactions in polaritonic chemistry.

20.
J Chem Phys ; 151(1): 014105, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31272186

ABSTRACT

We study a molecular emitter above a silver surface in the framework of macroscopic quantum electrodynamics and explore the population dynamics including non-Markovian effects. The theory we present is general for molecular fluorescence in the presence of dielectrics with any space-dependent, frequency-dependent, or complex dielectric functions. Furthermore, the proposed theory allows us to calculate the memory kernel of polaritons using computational electrodynamics packages. In the limit of a high vibration frequency, the different strengths of exciton-polariton couplings lead to distinct characteristics in the population dynamics, e.g., Franck-Condon-Rabi oscillation. (The frequency of Rabi oscillation is dependent on the Franck-Condon factor.) Additionally, in a specific condition, we derive a parameter-free formula that can be used to estimate the exciton-polariton coupling between a molecular emitter and a nanocavity, and the coupling estimated by our theory is in good agreement with the reported experimental results [Chikkaraddy et al., Nature 535, 127-130 (2016)].

SELECTION OF CITATIONS
SEARCH DETAIL