Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Lett ; 39(7): 1752-5, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24686596

ABSTRACT

We use digitally enhanced heterodyne interferometry to measure the stability of optical fiber laser frequency references. Suppression of laser frequency noise by over four orders of magnitude is achieved using post processing time delay interferometry, allowing us to measure the mechanical stability for frequencies as low as 100 µHz. The performance of the digitally enhanced heterodyne interferometer platform used here is not practically limited by the dynamic range or bandwidth issues that can occur in feedback stabilization systems. This allows longer measurement times, better frequency discrimination, a reduction in spatially uncorrelated noise sources and an increase in interferometer sensitivity. An optical fiber frequency reference with the stability reported here, over a signal band of 20 mHz-1 Hz, has potential for use in demanding environments, such as space-based interferometry missions and optical flywheel applications.

2.
Opt Lett ; 38(3): 278-80, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23381410

ABSTRACT

We present measurement results for a laser frequency reference, implemented with an all-optical fiber Michelson interferometer, down to frequencies as low as 1 mHz. Optical fiber is attractive for space-based operations as it is physically robust, small and lightweight. The small free spectral range of fiber interferometers also provides the possibility to prestabilize two lasers on two distant spacecraft and ensures that the beatnote remains within the detector bandwidth. We demonstrate that these fiber interferometers are viable candidates for future laser-based gravity recovery and climate experiment missions requiring a stability of 30 Hz/√Hz over a 10 mHz-1 Hz bandwidth.

3.
Opt Lett ; 37(13): 2448-50, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22743417

ABSTRACT

We present a method for the linearization and minimization of interferometer cyclic error. We utilize a polynomial curve fitting and resampling algorithm to correct for nonlinear mirror displacement. In the frequency domain, this algorithm compresses cyclic error into a single-frequency component and enables the precise measurement of cyclic error in a noise-dominated environment. We have applied the technique to determine the cyclic error for a range of interferometer components. In addition, we have used these measurements to optimize interferometer configuration and performance such that we routinely achieve a cyclic error of ∼50 pm for our custom Glan-Laser interferometer and ∼100 pm for a commercial interferometer.

4.
Opt Lett ; 35(24): 4202-4, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21165137

ABSTRACT

We present an all-digital phase meter for precision length measurements using heterodyne laser interferometry. Our phase meter has a phase sensitivity of 3 µrad/√Hz at signal frequencies of 1 Hz and above. We test the performance of our phase meter in an optical heterodyne interferometric configuration, using an active Sagnac interferometer test bed that is flexible and low noise. We demonstrate more than 70 dB of laser frequency noise suppression to achieve an optical phase sensitivity of 5 µrad/√Hz and a corresponding displacement sensitivity of 0.5 pm/√Hz at signal frequencies above 10 Hz. In addition, we demonstrate the ability of our phase meter to follow full fringe signals accurately at 100 Hz and to track large signal excursions in excess of 10(5) fringes without cycle slipping. Finally, we demonstrate a cyclic error of ≤1 pm/√Hz, above 10 Hz.

5.
J Opt Soc Am A Opt Image Sci Vis ; 27(12): 2583-7, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21119742

ABSTRACT

We present an experimental demonstration of an optical pattern recognition scheme based on spatial homodyne detection. Our scheme is adaptive, all-optical, utilizes a single-element photo-detector, and provides a single parameter readout to quantify the efficacy of pattern recognition, thereby allowing very fast pattern recognition speeds. The spatial homodyne detector was applied to the identification of one- and two-dimensional phase profiles.

SELECTION OF CITATIONS
SEARCH DETAIL