Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Sci Rep ; 14(1): 14079, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890341

ABSTRACT

While cryogenic electron microscopy (cryo-EM) is fruitfully used for harvesting high-resolution structures of sizable macromolecules, its application to small or flexible proteins composed of small domains like immunoglobulin (IgG) remain challenging. Here, we applied single particle cryo-EM to Rituximab, a therapeutic IgG mediating anti-tumor toxicity, to explore its solution conformations. We found Rituximab molecules exhibited aggregates in cryo-EM specimens contrary to its solution behavior, and utilized a non-ionic detergent to successfully disperse them as isolated particles amenable to single particle analysis. As the detergent adversely reduced the protein-to-solvent contrast, we employed phase plate contrast to mitigate the impaired protein visibility. Assisted by phase plate imaging, we obtained a canonical three-arm IgG structure with other structures displaying variable arm densities co-existing in solution, affirming high flexibility of arm-connecting linkers. Furthermore, we showed phase plate imaging enables reliable structure determination of Fab to sub-nanometer resolution from ab initio, yielding a characteristic two-lobe structure that could be unambiguously docked with crystal structure. Our findings revealed conformation diversity of IgG and demonstrated phase plate was viable for cryo-EM analysis of small proteins without symmetry. This work helps extend cryo-EM boundaries, providing a valuable imaging and structural analysis framework for macromolecules with similar challenging features.


Subject(s)
Cryoelectron Microscopy , Immunoglobulin Fab Fragments , Immunoglobulin G , Protein Conformation , Cryoelectron Microscopy/methods , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/ultrastructure , Immunoglobulin G/chemistry , Rituximab/chemistry , Humans , Models, Molecular
2.
Proc Natl Acad Sci U S A ; 121(5): e2313397121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38252815

ABSTRACT

Non-small cell lung cancer (NSCLC), a major life-threatening disease accounting for 85% of all lung cancer cases, has been treated with tyrosine kinase inhibitors (TKIs), but often resulted in drug resistance, and approximately 60% of TKI-resistant cases are due to acquired secondary (epithelial growth factor receptor) EGFR-T790M mutation. To identify alternative targets for TKI-resistant NSCLC with EGFR-T790M mutation, we found that the three globo-series glycosphingolipids are increasingly expressed on this type of NSCLC cell lines, and among them, the increase of stage-specific embryonic antigen-4 (SSEA-4) expression is the most significant. Compared to TKI-sensitive cell lines, SSEA-4 and the key enzyme ß3GalT5 responsible for the synthesis of SSEA3 are more expressed in TKI-resistant NSCLC cell lines with EGFR-T790M mutation, and the expression levels strongly correlate with poor survival in patients with EGFR mutation. In addition, we demonstrated that a SSEA-4 targeted monoclonal antibody, especially the homogeneous glycoform with well-defined Fc glycan designed to improve effective functions, is highly effective against this subpopulation of NSCLC in cell-based and animal studies. These findings provide a direction for the prediction of tumor recurrence and treatment of TKI-resistant NSCLC with EGFR-T790M mutation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Stage-Specific Embryonic Antigens , Animals , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , ErbB Receptors/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Neoplasm Recurrence, Local
3.
ACS Chem Biol ; 19(1): 153-161, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38085681

ABSTRACT

B cell maturation antigen (BCMA), a member of the tumor necrosis factor receptor (TNFR) family, on the cell surface plays a key role in maintaining the survival of plasma cells and malignant as well as inflammatory accessory cells. Therefore, targeting BCMA or disrupting its interaction with ligands has been a potential approach to cancer therapy. BCMA contains a single N-glycosylation site, but the function of N-glycan on BCMA is not understood. Here, we found that the N-glycosylation of BCMA promoted its cell-surface retention while removing the N-glycan increased BCMA secretion through γ-secretase-mediated shedding. Addition of γ-secretase inhibitor prevented nonglycosylated BCMA from shedding and protected cells from dexamethasone and TRAIL-induced apoptosis.


Subject(s)
B-Cell Maturation Antigen , Multiple Myeloma , Humans , B-Cell Maturation Antigen/metabolism , Amyloid Precursor Protein Secretases/metabolism , Glycosylation , Cell Survival , Polysaccharides
5.
Infect Immun ; 91(6): e0003123, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37162364

ABSTRACT

Cystic echinococcosis is caused by the larval stages (hydatids) of cestode parasites belonging to the species cluster Echinococcus granulosus sensu lato, with E. granulosus sensu stricto being the main infecting species. Hydatids are bladderlike structures that attain large sizes within various internal organs of livestock ungulates and humans. Hydatids are protected by the massive acellular laminated layer (LL), composed mainly of mucins. Parasite growth requires LL turnover, and abundant LL-derived particles are found at infection sites in infected humans, raising the question of how LL materials are dealt with by the hosts. In this article, we show that E. granulosus sensu stricto LL mucins injected into mice are taken up by Kupffer cells, the liver macrophages exposed to the vascular space. This uptake is largely dependent on the intact mucin glycans and on Clec4F, a C-type lectin receptor which, in rodents, is selectively expressed in Kupffer cells. This uptake mechanism operates on mucins injected both in soluble form intravenously (i.v.) and in particulate form intraperitoneally (i.p.). In mice harboring intraperitoneal infections by the same species, LL mucins were found essentially only at the infection site and in the liver, where they were taken up by Kupffer cells via Clec4F. Therefore, shed LL materials circulate in the host, and Kupffer cells can act as a sink for these materials, even when the parasite grows in sites other than the liver.


Subject(s)
Echinococcosis , Echinococcus granulosus , Animals , Humans , Mice , Echinococcosis/parasitology , Echinococcus granulosus/chemistry , Genotype , Kupffer Cells , Lectins , Mucins
6.
J Am Chem Soc ; 145(17): 9840-9849, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37089019

ABSTRACT

Polysaccharides have been successfully used as immunogens for the development of vaccines against bacterial infection; however, there are no oligosaccharide-based vaccines available to date and no previous studies of their processing and presentation. We reported here the intracellular enzymatic processing and antigen presentation of an oligosaccharide-conjugate cancer vaccine prepared from the glycan of Globo-H (GH), a globo-series glycosphingolipid (GSL). This oligosaccharide-conjugate vaccine was shown to elicit antibodies against the glycan moieties of all three globo-series GSLs that are exclusively expressed on many types of cancer and their stem cells. To understand the specificity and origin of cross-reactivity of the antibodies elicited by the vaccine, we found that the vaccine is first processed by fucosidase 1 in the early endosome of dendritic cells to generate a common glycan antigen of the GSLs along with GH for MHC class II presentation. This work represents the first study of oligosaccharide processing and presentation and is expected to facilitate the design and development of glycoconjugate vaccines based on oligosaccharide antigens.


Subject(s)
Cancer Vaccines , Neoplasms , Humans , Vaccines, Conjugate , Antigen Presentation , Antibodies , Polysaccharides , Oligosaccharides
7.
Front Chem ; 10: 897578, 2022.
Article in English | MEDLINE | ID: mdl-36339034

ABSTRACT

Current treatment of Helicobacter pylori involves a triple therapy comprising one proton pump inhibitor and two other antibiotics; however, the outcomes are limited due to the existence of antibiotic resistant strains. We previously reported that moenomycin A, a cell-wall transglycosylase inhibitor, is highly active against multidrug-resistant Helicobacter pylori. Herein we show that combination of moenomycin A with the protein synthesis inhibitor clarithromycin or metronidazole can synergistically achieve almost 95% eradication of multidrug-resistant Helicobacter pylori. We also found that the moenomycin A-non-susceptible strains of Helicobacter pylori with deletion of transglycosylase exhibit moenomycin A hyposensitivity, faster growth and impaired biofilm formation compared to the parental strain. Overall, the combination of moenomycin A and clarithromycin or metronidazole to achieve a synergistic effect on different targets is a promising treatment for multidrug-resistant Helicobacter pylori.

8.
Commun Biol ; 5(1): 879, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36028551

ABSTRACT

Lattice lightsheet microscopy (LLSM) featuring three-dimensional recording is improved to manipulate cellular behavior with subcellular resolution through optogenetic activation (optoLLSM). A position-controllable Bessel beam as a stimulation source is integrated into the LLSM to achieve spatiotemporal photoactivation by changing the spatial light modulator (SLM) patterns. Unlike the point-scanning in a confocal microscope, the lattice beams are capable of wide-field optical sectioning for optogenetic activation along the Bessel beam path.We show that the energy power required for optogenetic activations is lower than 1 nW (or 24 mWcm-2) for time-lapses of CRY2olig clustering proteins, and membrane ruffling can be induced at different locations within a cell with subcellular resolution through light-triggered recruitment of phosphoinositide 3-kinase. Moreover, with the epidermal growth factor receptor (EGFR) fused with CRY2olig, we are able to demonstrate guided cell migration using optogenetic stimulation for up to 6 h, where 463 imaging volumes are collected, without noticeable cellular damages.


Subject(s)
Microscopy , Optogenetics , Cell Movement , Cluster Analysis , Phosphatidylinositol 3-Kinases
9.
Chem Sci ; 13(21): 6233-6243, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35733906

ABSTRACT

Modulation of N-glycosylation using human Golgi α-mannosidase II (α-hGMII) inhibitors is a potential anticancer approach, but the clinical utility of current α-hGMII inhibitors is limited by their co-inhibition of human lysosomal α-mannosidase (α-hLM), resulting in abnormal storage of oligomannoses. We describe the synthesis and screening of a small library of novel bicyclic iminosugar-based scaffolds, prepared via natural product-inspired combinatorial chemistry (NPICC), which resulted in the identification of a primary α-hGMII inhibitor with 13.5-fold selectivity over α-hLM. Derivatization of this primary inhibitor using computation-guided synthesis (CGS) yielded an advanced α-hGMII inhibitor with nanomolar potency and 106-fold selectivity over α-hLM. In vitro studies demonstrated its N-glycan modulation and inhibitory effect on hepatocellular carcinoma (HCC) cells. In vivo studies confirmed its encouraging anti-HCC activity, without evidence of oligomannose accumulation.

10.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article in English | MEDLINE | ID: mdl-34876527

ABSTRACT

Pancreatic cancer is usually asymptomatic in the early stages; the 5-y survival rate is around 9%; and there is a lack of effective treatment. Here we show that SSEA-4 is more expressed in all pancreatic cancer cell lines examined but not detectable in normal pancreatic cells; and high expression of SSEA-4 or the key enzymes B3GALT5 + ST3GAL2 associated with SSEA-4 biosynthesis significantly lowers the overall survival rate. To evaluate potential new treatments for pancreatic cancer, homogeneous antibodies with a well-defined Fc glycan for optimal effector functions and CAR-T cells with scFv construct designed to target SSEA-4 were shown highly effective against pancreatic cancer in vitro and in vivo. This was further supported by the finding that a subpopulation of natural killer (NK) cells isolated by the homogeneous antibody exhibited enhancement in cancer-cell killing activity compared to the unseparated NK cells. These results indicate that targeting SSEA-4 by homologous antibodies or CAR-T strategies can effectively inhibit cancer growth, suggesting SSEA-4 as a potential immunotherapy target for treating pancreatic disease.


Subject(s)
Antibodies/immunology , Pancreatic Neoplasms/drug therapy , Stage-Specific Embryonic Antigens/immunology , Animals , Cell Line, Tumor , Cell- and Tissue-Based Therapy , Gene Expression Regulation , Humans , Immunotherapy , Immunotherapy, Adoptive , Mice , Mice, Nude , Xenograft Model Antitumor Assays
11.
ACS Chem Biol ; 16(8): 1526-1537, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34369155

ABSTRACT

The globo-series glycosphingolipids (SSEA3, SSEA4, and Globo H) were shown to express in many cancers selectively, and a combination of anti-SSEA4 and anti-Globo H antibodies was able to suppress tumor growth in mice inoculated with breast cancer cell lines. To further understand the effect, we focused on the combined effect of the two antibodies in target binding and antibody-dependent cellular cytotoxicity (ADCC) in vitro. Here, we report that the binding of anti-Globo H antibody (VK9) to MDA-MB231 breast cancer cells was influenced by anti-SSEA4 antibody (MC813-70), and a combination of both antibodies induced a similar effect as did anti-SSEA4 antibodies alone in a reporter-based ADCC assay, indicating that SSEA4 is a major target in breast cancer due to its higher expression than Globo H. Furthermore, we showed that a homogeneous anti-SSEA4 antibody (chMC813-70-SCT) designed to maximize the ADCC activity can be used to isolate a subpopulation of natural killer (NK) cells that exhibit an ∼23% increase in killing the target cells as compared to the unseparated NK cells. These findings can be used to predict a therapy outcome based on the expression levels of antigens and evaluate therapeutic antibody development.


Subject(s)
Antibodies/immunology , Antigens, Tumor-Associated, Carbohydrate/immunology , Breast Neoplasms/metabolism , Stage-Specific Embryonic Antigens/immunology , Animals , Antigens, Tumor-Associated, Carbohydrate/metabolism , Cell Line, Tumor , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , Receptors, IgG/metabolism , Stage-Specific Embryonic Antigens/metabolism
12.
Front Plant Sci ; 11: 594758, 2020.
Article in English | MEDLINE | ID: mdl-33281853

ABSTRACT

Plant viruses may serve as expression vectors for the efficient production of pharmaceutical proteins in plants. However, the downstream processing and post-translational modifications of the target proteins remain the major challenges. We have previously developed an expression system derived from Bamboo mosaic virus (BaMV), designated pKB19, and demonstrated its applicability for the production of human mature interferon gamma (mIFNγ) in Nicotiana benthamiana. In this study, we aimed to enhance the yields of soluble and secreted mIFNγ through the incorporation of various plant-derived signal peptides. Furthermore, we analyzed the glycosylation patterns and the biological activity of the mIFNγ expressed by the improved pKB19 expression system in N. benthamiana. The results revealed that the fusion of a native N. benthamiana extensin secretory signal (SSExt) to the N-terminal of mIFNγ (designated SSExt mIFNγ) led to the highest accumulation level of protein in intracellular (IC) or apoplast washing fluid (AWF) fractions of N. benthamiana leaf tissues. The addition of 10 units of 'Ser-Pro' motifs of hydroxyproline-O-glycosylated peptides (HypGPs) at the C-terminal end of SSExt mIFNγ (designated SSExt mIFNγ(SP)10) increased the solubility to nearly 2.7- and 1.5-fold higher than those of mIFNγ and SSExt mIFNγ, respectively. The purified soluble SSExt mIFNγ(SP)10 protein was glycosylated with abundant complex-type N-glycan attached to residues N56 and N128, and exhibited biological activity against Sindbis virus and Influenza virus replication in human cell culture systems. In addition, suspension cell cultures were established from transgenic N. benthamiana, which produced secreted SSExt mIFNγ(SP)10 protein feasible for downstream processing. These results demonstrate the applicability of the BaMV-based vector systems as a useful alternative for the production of therapeutic proteins, through the incorporation of appropriate fusion tags.

13.
ACS Chem Biol ; 15(9): 2382-2394, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32830946

ABSTRACT

N-glycans on the cell surface provide distinct signatures that are recognized by different glycan-binding proteins (GBPs) and pathogens. Most glycans in humans are asymmetric and isomeric, yet their biological functions are not well understood due to their lack of availability for studies. In this work, we have developed an improved strategy for asymmetric N-glycan assembly and diversification using designed common core substrates prepared chemically for selective enzymatic fucosylation and sialylation. The resulting 26 well-defined glycans that carry the sialic acid residue on different antennae were used in a microarray as a representative application to profile the binding specificity of hemagglutinin (HA) from the avian influenza virus (H5N2). We found distinct binding affinity for the Neu5Ac-Gal epitope linked to the N-acetylglucosamine (GlcNAc) of different branches and only a minor effect in binding for the terminal galactose on different branches. Overall, the microarray analysis showed branch-biased and context-based recognition patterns.


Subject(s)
Polysaccharides/chemical synthesis , Carbohydrate Sequence , Glycosylation , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H5N2 Subtype/chemistry , Microarray Analysis , Polysaccharides/metabolism
14.
PLoS One ; 15(5): e0233492, 2020.
Article in English | MEDLINE | ID: mdl-32469948

ABSTRACT

Glycosylation can affect various protein properties such as stability, biological activity, and immunogenicity. To produce human therapeutic proteins, a host that can produce glycoproteins with correct glycan structures is required. Microbial expression systems offer economical, rapid and serum-free production and are more amenable to genetic manipulation. In this study, we developed a protocol for CRISPR/Cas9 multiple gene knockouts and knockins in Kluyveromyces marxianus, a probiotic yeast with a rapid growth rate. As hyper-mannosylation is a common problem in yeast, we first knocked out the α-1,3-mannosyltransferase (ALG3) and α-1,6-mannosyltransferase (OCH1) genes to reduce mannosylation. We also knocked out the subunit of the telomeric Ku domain (KU70) to increase the homologous recombination efficiency of K. marxianus. In addition, we knocked in the MdsI (α-1,2-mannosidase) gene to reduce mannosylation and the GnTI (ß-1,2-N-acetylglucosaminyltransferase I) and GnTII genes to produce human N-glycan structures. We finally obtained two strains that can produce low amounts of the core N-glycan Man3GlcNAc2 and the human complex N-glycan Man3GlcNAc4, where Man is mannose and GlcNAc is N-acetylglucosamine. This study lays a cornerstone of glycosylation engineering in K. marxianus toward producing human glycoproteins.


Subject(s)
Kluyveromyces/genetics , Kluyveromyces/metabolism , Metabolic Engineering/methods , Polysaccharides/biosynthesis , Polysaccharides/chemistry , Biotechnology , CRISPR-Cas Systems , Gene Knock-In Techniques , Gene Knockout Techniques , Genes, Fungal , Glycoproteins/biosynthesis , Glycoproteins/chemistry , Glycoproteins/genetics , Glycosylation , Humans , Mannosidases/genetics , Mannosidases/metabolism , Mannosyltransferases/antagonists & inhibitors , Mannosyltransferases/genetics , Mannosyltransferases/metabolism , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Polysaccharides/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
15.
Proc Natl Acad Sci U S A ; 116(9): 3518-3523, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808745

ABSTRACT

The globo-series glycosphingolipids (GSLs) SSEA3, SSEA4, and Globo-H specifically expressed on cancer cells are found to correlate with tumor progression and metastasis, but the functional roles of these GSLs and the key enzyme ß1,3-galactosyltransferase V (ß3GalT5) that converts Gb4 to SSEA3 remain largely unclear. Here we show that the expression of ß3GalT5 significantly correlates with tumor progression and poor survival in patients, and the globo-series GSLs in breast cancer cells form a complex in membrane lipid raft with caveolin-1 (CAV1) and focal adhesion kinase (FAK) which then interact with AKT and receptor-interacting protein kinase (RIP), respectively. Knockdown of ß3GalT5 disrupts the complex and induces apoptosis through dissociation of RIP from the complex to interact with the Fas death domain (FADD) and trigger the Fas-dependent pathway. This finding provides a link between SSEA3/SSEA4/Globo-H and the FAK/CAV1/AKT/RIP complex in tumor progression and apoptosis and suggests a direction for the treatment of breast cancer, as demonstrated by the combined use of antibodies against Globo-H and SSEA4.


Subject(s)
Breast Neoplasms/genetics , Galactosyltransferases/genetics , Glycosphingolipids/genetics , Membrane Microdomains/genetics , Antigens, Tumor-Associated, Carbohydrate/genetics , Antigens, Tumor-Associated, Carbohydrate/metabolism , Apoptosis/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Caveolin 1/genetics , Caveolin 1/metabolism , Disease Progression , Fas-Associated Death Domain Protein/genetics , Female , Focal Adhesion Protein-Tyrosine Kinases/genetics , Gene Expression Regulation, Neoplastic/genetics , Glycosphingolipids/metabolism , Humans , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Membrane Microdomains/metabolism , Middle Aged , Proto-Oncogene Proteins c-akt/genetics , Saporins/genetics , Signal Transduction/genetics , Stage-Specific Embryonic Antigens/genetics , Stage-Specific Embryonic Antigens/metabolism
16.
Proc Natl Acad Sci U S A ; 115(28): 7302-7307, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29941599

ABSTRACT

Protein O-glycosylation by attachment of ß-N-acetylglucosamine (GlcNAc) to the Ser or Thr residue is a major posttranslational glycosylation event and is often associated with protein folding, stability, and activity. The methylation of histone H3 at Lys-27 catalyzed by the methyltransferase EZH2 was known to suppress gene expression and cancer development, and we previously reported that the O-GlcNAcylation of EZH2 at S76 stabilized EZH2 and facilitated the formation of H3K27me3 to inhibit tumor suppression. In this study, we employed a fluorescence-based method of sugar labeling combined with mass spectrometry to investigate EZH2 glycosylation and identified five O-GlcNAcylation sites. We also find that mutation of one or more of the O-GlcNAcylation sites S73A, S76A, S84A, and T313A in the N-terminal region decreases the stability of EZH2, but does not affect its association with the PRC2 components SUZ12 and EED. Mutation of the C-terminal O-GlcNAcylation site (S729A) in the catalytic domain of EZH2 abolishes the di- and trimethylation activities, but not the monomethylation of H3K27, nor the integrity of the PRC2/EZH2 core complex. Our results show the effect of individual O-GlcNAcylation sites on the function of EZH2 and suggest an alternative approach to tumor suppression through selective inhibition of EZH2 O-GlcNAcylation.


Subject(s)
Acetylglucosamine/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Mutation, Missense , Acetylglucosamine/chemistry , Acetylglucosamine/genetics , Amino Acid Substitution , Cell Line , Enhancer of Zeste Homolog 2 Protein/chemistry , Enhancer of Zeste Homolog 2 Protein/genetics , Enzyme Stability , Glycosylation , Humans , Protein Domains
17.
Nanoscale ; 10(6): 2820-2824, 2018 Feb 08.
Article in English | MEDLINE | ID: mdl-29362758

ABSTRACT

Using the excellent performances of a SACLA (RIKEN/HARIMA, Japan) X-ray free electron laser (X-FEL), coherent diffraction imaging (CDI) was used to detect individual liposome particles in water, with or without inserted doxorubicin nanorods. This was possible because of the electron density differences between the carrier, the liposome, and the drug. The result is important since liposome nanocarriers at present dominate drug delivery systems. In spite of the low cross-section of the original ingredients, the diffracted intensity of drug-free liposomes was sufficient for spatial reconstruction yielding quantitative structural information. For particles containing doxorubicin, the structural parameters of the nanorods could be extracted from CDI. Furthermore, the measurement of the electron density of the solution enclosed in each liposome provides direct evidence of the incorporation of ammonium sulphate into the nanorods. Overall, ours is an important test for extending the X-FEL analysis of individual nanoparticles to low cross-sectional systems in solution, and also for its potential use to optimize the manufacturing of drug nanocarriers.


Subject(s)
Drug Carriers/chemistry , Liposomes/chemistry , Nanotubes/chemistry , Cross-Sectional Studies , Doxorubicin , Electrons , Lasers , X-Ray Diffraction
18.
PLoS One ; 12(10): e0186780, 2017.
Article in English | MEDLINE | ID: mdl-29065139

ABSTRACT

Tuberculosis is a fatal human infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis) that is prevalent worldwide. Mycobacteria differ from other bacteria in that they have a cell wall composed of specific surface glycans that are the major determinant of these organisms' pathogenicity. The interaction of M. tuberculosis with pattern recognition receptors (PRRs), in particular C-type lectin receptors (CLRs), on the surface of macrophages plays a central role in initiating innate and adaptive immunity, but the picture as a whole remains a puzzle. Defining novel mechanisms by which host receptors interact with pathogens in order to modulate a specific immune response is an area of intense research. In this study, based on an in vitro lectin binding assay, CLEC9A (DNGR-1) is identified as a novel CLR that binds with mycobacteria. Our results with CLEC9A-knocked down cells and a CLEC9A-Fc fusion protein as blocking agents show that CLEC9A is involved in the activation of SYK and MAPK signaling in response to heat-killed M. tuberculosis H37Ra treatment, and it then promotes the production of CXCL8 and IL-1ß in macrophages. The CXCL8 and IL-1ß secreted by the activated macrophages are critical to neutrophil recruitment and activation. In a in vivo mouse model, when the interaction between CLEC9A and H37Ra is interfered with by treatment with CLEC9A-Fc fusion protein, this reduces lung inflammation and cell infiltration. These findings demonstrate that CLEC9A is a specialized receptor that modulates the innate immune response when there is a mycobacterial infection.


Subject(s)
Hot Temperature , Lectins, C-Type/physiology , Macrophages/physiology , Mycobacterium tuberculosis/physiology , Neutrophils/cytology , Receptors, Mitogen/physiology , Animals , Cell Line , Gene Knockdown Techniques , Humans , Lectins, C-Type/genetics , Macrophages/enzymology , Male , Mice , Mice, Inbred C57BL , Protein Kinases/metabolism , Receptors, Mitogen/genetics , Signal Transduction
19.
Cell Chem Biol ; 24(12): 1467-1478.e5, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29033318

ABSTRACT

Fucosylation is a glycan modification critically involved in cancer and inflammation. Although potent fucosylation inhibitors are useful for basic and clinical research, only a few inhibitors have been developed. Here, we focus on a fucose analog with an alkyne group, 6-alkynyl-fucose (6-Alk-Fuc), which is used widely as a detection probe for fucosylated glycans, but is also suggested for use as a fucosylation inhibitor. Our glycan analysis using lectin and mass spectrometry demonstrated that 6-Alk-Fuc is a potent and general inhibitor of cellular fucosylation, with much higher potency than the existing inhibitor, 2-fluoro-fucose (2-F-Fuc). The action mechanism was shown to deplete cellular GDP-Fuc, and the direct target of 6-Alk-Fuc is FX (encoded by TSTA3), the bifunctional GDP-Fuc synthase. We also show that 6-Alk-Fuc halts hepatoma invasion. These results highlight the unappreciated role of 6-Alk-Fuc as a fucosylation inhibitor and its potential use for basic and clinical science.


Subject(s)
Alkynes/pharmacology , Antineoplastic Agents/pharmacology , Carbohydrate Epimerases/antagonists & inhibitors , Carcinoma, Hepatocellular/drug therapy , Enzyme Inhibitors/pharmacology , Fucose/pharmacology , Guanosine Diphosphate Fucose/biosynthesis , Ketone Oxidoreductases/antagonists & inhibitors , Liver Neoplasms/drug therapy , Alkynes/chemistry , Antineoplastic Agents/chemistry , Carbohydrate Epimerases/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/drug effects , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Fucose/chemistry , HEK293 Cells , HeLa Cells , Humans , Ketone Oxidoreductases/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology
20.
J Am Chem Soc ; 139(37): 12947-12955, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28820257

ABSTRACT

N-Glycosylation is an important co- and/or post-translational modification that occurs on the vast majority of the one-third of the mammalian proteome that traverses the cellular secretory pathway, regulating glycoprotein folding and functions. Previous studies on the sequence requirements for N-glycosylation have yielded the Asn-X-Ser/Thr (NXS/T) sequon and the enhanced aromatic sequons (Phe-X-Asn-X-Thr and Phe-X-X-Asn-X-Thr), which can be efficiently N-glycosylated. To further investigate the influence of sequence variation on N-glycosylation efficiency in the context of a five-residue enhanced aromatic sequon, we used the human CD2 adhesion domain (hCD2ad) to screen the i-2, i-1, i+1, and i+2 residues flanking Asn at the i position. We found that aromatic residues, especially Trp, and sulfur-containing residues at the i-2 position improved N-glycosylation efficiency, while positively charged residues such as Arg suppressed N-glycosylation. Thiol, hydroxyl, and aliphatic-based side chains at the i-1 position had higher N-glycosylation efficiency, and Cys, in particular, compensated for the negative effect of Arg at the i-2 position. Small residues and Ser at the i+1 position increased the likelihood of N-glycosylation, and Thr is better than Ser at the i+2 position. We devised an algorithm for prediction of N-glycosylation efficiency using the SAS software, employing the 120 sequences studied as a training set. We then introduced the optimized-enhanced aromatic sequons into other glycoproteins and observed an enhancement in N-glycan occupancy that was further supported by modeling the high-affinity interaction between the optimized sequence on hCD2ad and a human oligosaccharyltransferase (OST) subunit. The findings in this study provide useful information for enhancing or suppressing N-glycosylation at a site of interest and valuable data for a better understanding of OST-catalyzed N-glycosylation.


Subject(s)
CD2 Antigens/metabolism , Hexosyltransferases/metabolism , Membrane Proteins/metabolism , CD2 Antigens/chemistry , Glycosylation , Hexosyltransferases/chemistry , Humans , Membrane Proteins/chemistry , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...