Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686957

ABSTRACT

X-ray nanodiffraction was used to measure the thermal stress of 10 µm nanotwinned Cu bumps in Cu/SiO2 hybrid structures at -55 °C, 27 °C, 100 °C, 150 °C, and 200 °C. Bonding can be achieved without externally applied compression. The X-ray beam size is about 100 nm in diameter. The Cu bump is dominated by (111) oriented nano-twins. Before the hybrid bonding, the thermal stress in Cu bumps is compressive and remains compressive after bonding. The average stress in the bonded Cu joint at 200 °C is as large as -169.1 MPa. In addition, using the strain data measured at various temperatures, one can calculate the effective thermal expansion coefficient (CTE) for the 10 µm Cu bumps confined by the SiO2 dielectrics. This study reports a useful approach on measuring the strain and stress in oriented metal bumps confined by SiO2 dielectrics. The results also provide a deeper understanding on the mechanism of hybrid bonding without externally applied compression.

2.
Nanomaterials (Basel) ; 13(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37177120

ABSTRACT

In this study, thermal and argon (Ar) plasma/wetting treatments were combined to enhance the bonding strength of polyimide (PI) films. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) was used to analyze the changes in the PI imidization degrees. The contact angles of the PI films were also measured. The results show that the contact angles of the fully cured PI films markedly decreased from 78.54° to 26.05° after the Ar plasma treatments. X-ray photoelectron spectroscopy (XPS) analysis was also conducted on the PI surfaces. We found that the intensities of the C-OH and C-N-H bonds increased from 0% to 13% and 29% to 57%, respectively, after Ar plasma activation. Such increases in the C-OH and C-N-H intensities could be attributed to the generation of dangling bonds and the breakage of the imide ring or polymer long chains. Shear tests were also conducted to characterize the bonding strength of the PI films, which, after being treated with the appropriate parameters of temperature, plasma power, and wetting droplets, was found to be excellent at greater than 35.3 MPa.

3.
J Am Chem Soc ; 145(16): 9136-9143, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37070601

ABSTRACT

The electrochemical carbon dioxide reduction reaction (CO2RR) is a promising route to close the carbon cycle by reducing CO2 into valuable fuels and chemicals. Electrocatalysts with high selectivity toward a single product are economically desirable yet challenging to achieve. Herein, we demonstrated a highly (111)-oriented Cu foil electrocatalyst with dense twin boundaries (TB) (tw-Cu) that showed a high Faradaic efficiency of 86.1 ± 5.3% toward CH4 at -1.2 ± 0.02 V vs the reversible hydrogen electrode. Theoretical studies suggested that tw-Cu can significantly lower the reduction barrier for the rate-determining hydrogenation of CO compared to planar Cu(111) under working conditions, which suppressed the competing C-C coupling, leading to the experimentally observed high CH4 selectivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...