Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(5): 2833-2843, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38261278

ABSTRACT

Despite their diverse application profile, aromatic organochlorides such as 2,4,6-trichlorophenol (TP) are widely renowned for creating a negative toll on the balance of the ecosystem. Strict regulatory regimes are required to limit exposure to such organic pollutants. By deployment of a straightforward detection scheme, electrochemical sensing technology offers a competitive edge over the other techniques and practices available for pollutant monitoring. Here, we present a streamlined hydrothermal approach for synthesizing copper-manganese layered double hydroxide (CuMn-LDH) rods to be employed as electrocatalysts for detecting TP in various media. With a focused intention to leverage the full potential of the prepared CuMn-LDHs, the interlamellar region is configured using a series of intercalants. Further, a thorough comparative analysis of their structures, morphologies, and electrochemical performance is accomplished using various analytical techniques. The electrocatalytic oxidation ability of the CuMn-LDH toward TP molecules is markedly altered by incorporating various anions into the gallery region. The dynamic attributes of the developed sensor, such as a wide linear response (0.02-289.2 µM), a low detection limit (0.0026 µM), and good anti-interfering ability, acclaim its superior viability for real-time detection of TP with exceptional tolerance to the presence of foreign moieties. Hence, this work manifests that the nature of intercalants is a vital aspect to consider while designing LDH-based electrochemical probes to detect priority pollutants.

2.
Bioengineering (Basel) ; 10(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37508822

ABSTRACT

Osteoporosis-induced vertebral compression fracture (OVCF) occurs commonly in people over the age of 50, especially among menopausal women. Besides conservative therapy, minimally invasive percutaneous vertebroplasty (PVP) and kyphoplasty (PKP) have been widely used in clinical treatment and achieved good efficacy. However, the leakage of bone cement (CL) during vertebroplasty (PV) is a major risk that can cause (serious) complications such as compression of the spinal cord, pulmonary embolism, or even paraplegia. In this study, we introduced a new aspiration technique with standard PV procedures (APV) to ameliorate the risk of leakage with quantitative verifications of its effectiveness. APV intends to create a differential pressure to guide the direction of cement flow within the vertebrae. To test this technique, Nubian goats' ex vivo vertebral bodies (VBs) were used to simulate the PV surgical process in humans. Results show that the proposed APV has a lower leakage rate of 13% compared to the 53% of conventional PV. Additionally, the APV approach achieves more uniform cement distribution via the 9-score method with a value of 7 ± 1.30 in contrast to 4 ± 1.78 by conventional PV.

3.
Inorg Chem ; 61(41): 16370-16379, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36184926

ABSTRACT

Nanomaterials have versatile properties owing to their high surface-to-volume ratio and can thus be used in a variety of applications. This work focused on applying a facile hydrothermal strategy to prepare praseodymium vanadate nanoparticles due to the importance of nanoparticles in today's society and the fact that their synthesis might be a challenging endeavor. The structural and morphological characterizations were carried out to confirm the influence of the optimizations on the reaction's outcomes, which revealed praseodymium vanadate (PrVO4) with a tetragonal crystal system. In this regard, the proposed development of electrochemical sensors based on the PrVO4 nanocatalyst for the real-time detection of arsenic drug roxarsone (RXS) is a primary concern. The detection was measured by amperometric (i-t) signals where PrVO4/SPCE, as a new electrochemical sensing medium for RXS detection, increased the sensitivity of the sensor to about ∼2.5 folds compared to the previously reported ones. In the concentration range of 0.001-551.78 µM, the suggested PrVO4/SPCE sensor has a high sensitivity for RXS, with a detection limit of 0.4 nM. Furthermore, the impact of several selected potential interferences, operational stability (2000 s), and reproducibility measurements have no discernible effect on RXS sensing, making it the ideal sensing device feasible for technical analysis. The real-time analysis reveals the excellent efficiency and reliability of the prosed sensor toward RXS detection with favorable recovery ranges between ±97.00-99.66% for chicken, egg, water, and urine samples.


Subject(s)
Arsenic , Nanoparticles , Roxarsone , Electrochemical Techniques , Electrodes , Limit of Detection , Praseodymium , Reproducibility of Results , Roxarsone/analysis , Roxarsone/chemistry , Vanadates , Water
4.
Environ Res ; 215(Pt 1): 114232, 2022 12.
Article in English | MEDLINE | ID: mdl-36057336

ABSTRACT

Hydroxychloroquine (HCQ) is a significant viral resistant drug widely acknowledged for its immunomodulatory and anti-inflammatory activities. To minimize the impact of HCQ residues on environmental pathways, exploring control measures is vital. In this regard, electrochemical sensing of HCQ using well-structured functional materials is advantageous. This work aims to provide an economical and sustainable route for the synthesis of ANbO3 (A = Na,K) perovskites via a thymol-menthol-based natural deep eutectic solvent. The as-synthesized NaNbO3 and KNbO3 are pinned to functionalized carbon nanofibers (f-CNF) via an ultrasonication approach. Benefitting from the synergistic effect of rapid electron transfer and improved surface area, enhanced electrochemical activity for NaNbO3@f-CNF/GCE is achieved. The fabricated NaNbO3@f-CNF displays a LOD (DPV = 0.01 µM, i-t = 0.007 µM), wide dynamic range (DPV = 0.09-22.5 µM, i-t = 0.006-35 µM), outstanding selectivity, and reproducibility, proving feasible in real-time analysis with good recovery rates (±97.67-99.81%). The NADES-mediated preparation of perovskites evades the incorporation of traditional toxic solvents and yields atom-efficient ANbO3 (A = Na,K) associated with green solvent templates. This validates the sustainable fabrication of electrode materials with reduced energy stipulations for detecting hazardous drug pollutants in the ecosystem.


Subject(s)
Environmental Pollutants , Nanofibers , Calcium Compounds , Carbon/chemistry , Deep Eutectic Solvents , Ecosystem , Electrochemical Techniques , Hydroxychloroquine , Menthol , Oxides , Reproducibility of Results , Thymol , Titanium
5.
Inorg Chem ; 61(35): 14046-14057, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35998644

ABSTRACT

The quantification of 3-nitro-l-tyrosine (NO2-Tyr), an in vivo biomarker of nitrosative stress, is indispensable for the clinical intervention of various inflammatory disorders caused by nitrosative stress. By integrating the unique features of BiVO4 and MoS2 with matching bandgap energies, electrode materials with amplified response signals can be developed. In this regard, we introduce a hydrothermally synthesized bismuth vanadate sheathed molybdenum disulfide (MoS2@BiVO4) heterojunction as a highly sensitive electrode material for the determination of NO2-Tyr. Excellent electrochemical behavior perceived for the MoS2@BiVO4 augments the performance of the sensor and allows the measurement of NO2-Tyr in biological media without any time-consuming pretreatments. The synergistic interactions between BiVO4 and MoS2 heterojunctions contribute to low resistance charge transfer (Rct = 159.13 Ω·cm2), a reduction potential Epc = -0.58 V (vs Ag/AgCl), and a good response range (0.001-526.3 µM) with a lower limit of detection (0.94 nM) toward the detection of NO2-Tyr. An improved active surface area, reduced charge recombination, and high analyte adsorption contribute to the high loading of the biomarker for improved selectivity (in the presence of 10 interfering compounds), operational stability (1000 s), and reproducibility (six various modified electrodes). The proposed sensor was successfully utilized for the real-time determination of NO2-Tyr in water, urine, and saliva samples with good recovery values (±98.94-99.98%), ascertaining the reliability of the method. It is noteworthy that the electrochemical activity remains unaffected by other redox interferons, thus leading to targeted sensing applications.


Subject(s)
Molybdenum , Nitrogen Dioxide , Bismuth , Disulfides , Electrochemical Techniques/methods , Electrodes , Limit of Detection , Molybdenum/chemistry , Reproducibility of Results , Tyrosine/analogs & derivatives , Vanadates
6.
Inorg Chem ; 61(15): 5824-5835, 2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35369690

ABSTRACT

Physiological storage disorders are caused by ineffective post-harvest handling of horticultural crops, particularly fruits. To address these post-harvest concerns, diphenylamine (DPAH•+) is widely used as a preservative to prevent fruit degradation and surface scald during storage around the world. Humans are negatively affected by the use of high concentrations of DPAH•+ because of the various health complications related to its exposure. As a result, accurate detection and quantification of DPAH•+ residues in treated fruits are critical. Rare earth metal orthovanadates, which have excellent physical and chemical properties, are potential materials for electrochemical sensors in this area. Herein, we present a simple and direct ultrasonication technique for the surfactant-assisted synthesis of praseodymium orthovanadate (PrVO4 or PrV) loaded on nickel iron layered double hydroxide (NiFe-LDH) synthesized with deep eutectic solvent assistance, as well as its application as an effective catalyst in the detection and degradation of DPAH•+ in fruits and water samples. The current work presents supreme electrochemical features of a PrV@NiFe-LDH-modified screen-printed carbon electrode (SPCE) where cetyltrimethylammonium bromide (CTAB) surfactant-driven fabrication of PrV directs the formation of highly qualified engineered structures and the deep eutectic solvent based green synthesis of NiFe-LDH creates hierarchical lamellar structures following the principles of green chemistry. PrV and NiFe-LDH combine to produce a synergistic effect that improves the number of active sites, charge transfer kinetics, and electronic conductivity. Differential pulse voltammetry analysis of PrV@NiFe-LDH/SPCE reveals a dynamic working range (0.005-226.26 µM), increased sensitivity (133.13 µA µM-1 cm-2), enhanced photocatalytic activity, and low detection limit (0.001 µM), which are considered significant when compared with the former reported electrodes in the literature for the determination of DPAH+ for its real-time applications.


Subject(s)
Nanofibers , Vanadates , Carbon , Deep Eutectic Solvents , Diphenylamine , Humans , Hydroxides , Iron/chemistry , Praseodymium , Surface-Active Agents
7.
Inorg Chem ; 60(17): 13150-13160, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34428891

ABSTRACT

Antibiotics are the most important drugs for people and animals to fight bacterial illnesses. Overuse of antibiotics has had unintended consequences, such as antibiotic resistance and ecosystem eradication owing to toxic chemical discharge, which have a negative influence on the biome. Herein, we report the synthesis of a hollow ellipsoid-shaped yttrium vanadate/graphitic carbon nitride (YVO4@CN) nanocomposite by a hydrothermal approach followed by a sonochemical method for the effective detection of dimetridazole (DMZ). The synergic and coupling effect between both the phases offer non-linear cumulative ramifications which can positively enhance the individual properties of the materials under consideration. This positive hybrid effect increases the conductivity, shortens the ion-diffusion pathway, enhances the electron/ion transportation, and provides more active sites and electron-conducting channels. The accurate optimization of the experimental conditions proposes good electrocatalytic activity for the YVO4@CN catalyst, exhibiting a good response toward DMZ detection. It reveals an extensive linear concentration range (0.001-153.3 and 176.64-351.6 µM), a low detection limit (0.8 nM), higher sensitivity (4.98 µA µM-1 cm-2), appreciable selectivity, increased operational stability (2200 s), and good cycle stability (60 cycles). The electrochemical performance of YVO4@CN indicates its practical application in real-time sample analysis of several families of nitroimidazole drugs.

8.
Inorg Chem ; 60(16): 12425-12435, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34311546

ABSTRACT

Rare-earth metal orthovanadates have great technological relevance in the family of rare-earth compounds owing to their excellent physical and chemical properties. A significant number of studies have been carried out on this class of compounds to exploit their electrochemical properties in virtue of variable oxidation states. But holmium vanadate (HoV) and its morphology selective synthesis have not been considered, which can have potential applications similar to the rest of the family. In this work, we propose the synthesis of superior architectures of HoV with a functionalized boron nitride (f-BN) nanocomposite. The synergistic effect between HoV and f-BN can have a positive effect on the physical characteristics of the nanocomposite, which can be explored for its electrochemical capacity. Here, HoV incorporated with f-BN is explored for the electrochemical detection of Hg2+ ions, which is known for its toxicity-induced environmental health hazards. The structural and compositional revelation reveals higher conductivity and faster electron transfer in the composite, which facilitates a wide working range (0.02-53.8 and 64.73-295.4 µM), low limit of detection (5 nM), higher sensitivity (66.6 µA µM-1 cm-2), good selectivity over 10-fold higher concentration of other interfering compounds compared to Hg2+ ion concentration, and good cycles stability (30 segments) toward Hg2+ ion detection. This also envisages the morphology selective synthesis and utilization of other rare-earth metals, whose electrochemical capacities are unexplored.

9.
Mikrochim Acta ; 188(6): 216, 2021 05 29.
Article in English | MEDLINE | ID: mdl-34052922

ABSTRACT

A sensitive voltammetric sensor has been developed for hazardous methyl parathion detection (MP) using graphene oxide@Ce-doped TiO2 nanoparticle (GO@Ce-doped TiO2 NP) electrocatalyst. The GO@Ce-doped TiO2 NPs were prepared through the sol-gel method and characterized by various physicochemical and electrochemical techniques. The GO@Ce-doped TiO2 NP-modified glassy carbon electrode (GCE) addresses excellent electrocatalytic activity towards MP detection for environmental safety and protection. The developed strategy of GO@Ce-doped TiO2 NPs at GCE surfaces for MP detection achieved excellent sensitivity (2.359 µA µM-1 cm-2) and a low detection limit (LOD) 0.0016 µM with a wide linear range (0.002 to 48.327 µM). Moreover, the fabricated sensor shows high selectivity and long-term stability towards MP detection; this significant electrode further paves the way for real-time monitoring of environmental quantitative samples with satisfying recoveries.


Subject(s)
Electrochemical Techniques/methods , Graphite/chemistry , Methyl Parathion/analysis , Nanocomposites/chemistry , Carbon/chemistry , Catalysis , Cerium/chemistry , Electrodes , Insecticides/analysis , Limit of Detection , Metal Nanoparticles/chemistry , Reproducibility of Results , Titanium/chemistry
10.
Inorg Chem ; 60(7): 5271-5281, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33735569

ABSTRACT

In the field of agriculture fungicides are vital, providing the most important ecosystem service for food production. The widespread use of these chemicals can significantly lead to various ecotoxicological threats with adverse effects, such as environmental changes, microbial resistance, and phytotoxicity. Electrochemical sensors offer enormous potential for the identification and monitoring of hazardous substances in accordance with their constructive characteristics, namely, precision, accuracy, sensitivity, and selectivity, over traditional analytical techniques. Here, we thus report the synthesis of the lanthanum vanadate/hexagonal boron nitride (LaV/h-BN) composite for the electrochemical determination of carbendazim (CZ), which is a widely used fungicide for disease management with critical risks associated with its overexposure. The combination of LaV and h-BN accelerates the formation of active sites, facilitating faster charge transfer and higher electronic conductivity. The synergistic effects greatly improve the preference of the modified electrode with increased sensitivity, a lower limit of detection, and wide linear responses toward CZ detection. The existence of variable oxidation states in the orthovanadate together with the unique properties of h-BN mark LaV/h-BN as an advanced material for specific applications in the family of rare-earth metal orthovanadate. Also, the deep eutectic solvent-assisted synthesis of the material creates an environmentally efficient system with reduced energy requisites to allow for applications in effective environmental monitoring.

11.
ACS Appl Bio Mater ; 4(10): 7497-7508, 2021 10 18.
Article in English | MEDLINE | ID: mdl-35006704

ABSTRACT

Nanomaterials are of significant interest in acetaminophen (APAP) detection in pharmaceutical samples. Herein, a carbon black/single-crystalline rodlike bismuth sulfide (CB/Bi2S3) composite prepared by an ultrasonic method is reported and utilized for the rapid analysis of APAP. The highly oriented edge reactive sites of the CB/Bi2S3 composite promoted synergy and good electrochemical sensing performance with a fast electron transfer rate and low overpotential (0.35 V). Therefore, a CB/Bi2S3 composite-modified glassy carbon electrode (GCE) was applied to the selective determination of APAP by the voltammetric technique. The CB/Bi2S3 composite-modified electrode showed the lowest limit of detection of APAP (1.9 nM) with excellent sensitivity. The proposed CB/Bi2S3/GCE platform exhibited high selectivity, excellent stability (87.15%), and reproducibility. Also, the CB/Bi2S3/GCE sensor was then successfully used to analyze an APAP pharmaceutical sample and exhibited satisfactory outcomes. Therefore, the CB/Bi2S3-modified GCE sensor platform would be a low-cost and robust GCE electrode material for APAP detection.


Subject(s)
Antipyretics , Acetaminophen/pharmacology , Bismuth , Carbon , Pharmaceutical Preparations , Reproducibility of Results , Soot , Sulfides
12.
Anal Chim Acta ; 1122: 76-88, 2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32503746

ABSTRACT

An electrochemical method has described for the voltammetric determination and oxidation of caffeic acid (CA) at a glassy carbon electrode (GCE) modified carbon/iron-based active catalyst as a sensing platform. In this study, we have developed a highly sensitive electrochemical CA sensor with f-MWCNTs/α-NaFeO2 composite, which was developed by a simple ultrasonication method. The microstructural features of the f-MWCNTs/α-NaFeO2 composite characterized by different physicochemical and analytical techniques. Under the optimized condition, the developed sensor archive the ultra-sensitivity (44.6859 µA µM-1cm-2) at a lower concentration with excellent linearity (R2 = 0.9943) and which shows low detection limit (LOD = 0.002 µM) and Limit of quantification (LOQ = 0.0068 µM) by using differential pulse voltammetry (DPV) technique. The suggested sensor may improve the effective and efficient platform to the determination of CA in the healthcare system.


Subject(s)
Antioxidants/chemistry , Beverages/analysis , Caffeic Acids/analysis , Carbon/chemistry , Electrochemical Techniques , Iron/chemistry , Catalysis , Electrodes , Molecular Structure , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...