Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sci Transl Med ; 11(521)2019 12 04.
Article in English | MEDLINE | ID: mdl-31801883

ABSTRACT

Hormonal therapy targeting androgen receptor (AR) is initially effective to treat prostate cancer (PCa), but it eventually fails. It has been hypothesized that cellular heterogeneity of PCa, consisting of AR+ luminal tumor cells and AR- neuroendocrine (NE) tumor cells, may contribute to therapy failure. Here, we describe the successful purification of NE cells from primary fresh human prostate adenocarcinoma based on the cell surface receptor C-X-C motif chemokine receptor 2 (CXCR2). Functional studies revealed CXCR2 to be a driver of the NE phenotype, including loss of AR expression, lineage plasticity, and resistance to hormonal therapy. CXCR2-driven NE cells were critical for the tumor microenvironment by providing a survival niche for the AR+ luminal cells. We demonstrate that the combination of CXCR2 inhibition and AR targeting is an effective treatment strategy in mouse xenograft models. Such a strategy has the potential to overcome therapy resistance caused by tumor cell heterogeneity.


Subject(s)
Drug Resistance, Neoplasm , Molecular Targeted Therapy , Prostatic Neoplasms/drug therapy , Receptors, Interleukin-8B/antagonists & inhibitors , Animals , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Disease Progression , Humans , Male , Mice, Nude , Neoplasm Grading , Neoplastic Stem Cells/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Neuroendocrine Tumors/blood supply , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/pathology , Neurosecretory Systems/pathology , Phenotype , Prostatic Neoplasms/blood supply , Prostatic Neoplasms/pathology , Receptors, Interleukin-8B/metabolism , Signal Transduction , Tumor Microenvironment
2.
J Med Genet ; 56(7): 453-460, 2019 07.
Article in English | MEDLINE | ID: mdl-30890586

ABSTRACT

BACKGROUND: PALB2 monoallelic loss-of-function germ-line variants confer a breast cancer risk comparable to the average BRCA2 pathogenic variant. Recommendations for risk reduction strategies in carriers are similar. Elaborating robust criteria to identify loss-of-function variants in PALB2-without incurring overprediction-is thus of paramount clinical relevance. Towards this aim, we have performed a comprehensive characterisation of alternative splicing in PALB2, analysing its relevance for the classification of truncating and splice site variants according to the 2015 American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. METHODS: Alternative splicing was characterised in RNAs extracted from blood, breast and fimbriae/ovary-related human specimens (n=112). RNAseq, RT-PCR/CE and CloneSeq experiments were performed by five contributing laboratories. Centralised revision/curation was performed to assure high-quality annotations. Additional splicing analyses were performed in PALB2 c.212-1G>A, c.1684+1G>A, c.2748+2T>G, c.3113+5G>A, c.3350+1G>A, c.3350+4A>C and c.3350+5G>A carriers. The impact of the findings on PVS1 status was evaluated for truncating and splice site variant. RESULTS: We identified 88 naturally occurring alternative splicing events (81 newly described), including 4 in-frame events predicted relevant to evaluate PVS1 status of splice site variants. We did not identify tissue-specific alternate gene transcripts in breast or ovarian-related samples, supporting the clinical relevance of blood-based splicing studies. CONCLUSIONS: PVS1 is not necessarily warranted for splice site variants targeting four PALB2 acceptor sites (exons 2, 5, 7 and 10). As a result, rare variants at these splice sites cannot be assumed pathogenic/likely pathogenic without further evidences. Our study puts a warning in up to five PALB2 genetic variants that are currently reported as pathogenic/likely pathogenic in ClinVar.


Subject(s)
Alternative Splicing , Fanconi Anemia Complementation Group N Protein/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Alleles , Gene Expression Profiling , Genetic Association Studies/methods , Germ-Line Mutation , Humans , Mutation , Neoplasms/diagnosis , Neoplasms/genetics , Nonsense Mediated mRNA Decay , RNA Splice Sites
3.
Genet Med ; 21(7): 1669, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30127414

ABSTRACT

The PDF and HTML versions of the article have been updated to include the Creative Commons Attribution 4.0 International License information.

4.
Genet Med ; 21(3): 683-693, 2019 03.
Article in English | MEDLINE | ID: mdl-30054569

ABSTRACT

PURPOSE: Gross duplications are ambiguous in terms of clinical interpretation due to the limitations of the detection methods that cannot infer their context, namely, whether they occur in tandem or are duplicated and inserted elsewhere in the genome. We investigated the proportion of gross duplications occurring in tandem in breast cancer predisposition genes with the intent of informing their classifications. METHODS: The DNA breakpoint assay (DBA) is a custom, paired-end, next-generation sequencing (NGS) method designed to capture and detect deep-intronic DNA breakpoints in gross duplications in BRCA1, BRCA2, ATM, CDH1, PALB2, and CHEK2. RESULTS: DBA allowed us to ascertain breakpoints for 44 unique gross duplications from 147 probands. We determined that the duplications occurred in tandem in 114 (78%) carriers from this cohort, while the remainder have unknown tandem status. Among the tandem gross duplications that were eligible for reclassification, 95% of them were upgraded to pathogenic. CONCLUSION: DBA is a novel, high-throughput, NGS-based method that informs the tandem status, and thereby the classification of, gross duplications. This method revealed that most gross duplications in the investigated genes occurred in tandem and resulted in a pathogenic classification, which helps to secure the necessary treatment options for their carriers.


Subject(s)
Breast Neoplasms/genetics , High-Throughput Nucleotide Sequencing/methods , Tandem Repeat Sequences/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Checkpoint Kinase 2/genetics , Cohort Studies , DNA/genetics , DNA Breaks , Fanconi Anemia Complementation Group N Protein/genetics , Female , Gene Duplication/genetics , Genetic Predisposition to Disease/genetics , Genome , Germ-Line Mutation , Humans , Mutation , Sequence Analysis, DNA/methods
5.
Front Oncol ; 8: 286, 2018.
Article in English | MEDLINE | ID: mdl-30101128

ABSTRACT

Clinical genetic testing for hereditary breast and ovarian cancer (HBOC) is becoming widespread. However, the interpretation of variants of unknown significance (VUS) in HBOC genes, such as the clinically actionable genes BRCA1 and BRCA2, remain a challenge. Among the variants that are frequently classified as VUS are those with unclear effects on splicing. In order to address this issue we developed a high-throughput RNA-massively parallel sequencing assay-CloneSeq-capable to perform quantitative and qualitative analysis of transcripts in cell lines and HBOC patients. This assay is based on cloning of RT-PCR products followed by massive parallel sequencing of the cloned transcripts. To validate this assay we compared it to the RNA splicing assays recommended by members of the ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) consortium. This comparison was performed using well-characterized lymphoblastoid cell lines (LCLs) generated from carriers of the BRCA1 or BRCA2 germline variants that have been previously described to be associated with splicing defects. CloneSeq was able to replicate the ENIGMA results, in addition to providing quantitative characterization of BRCA1 and BRCA2 germline splicing alterations in a high-throughput fashion. Furthermore, CloneSeq was used to analyze blood samples obtained from carriers of BRCA1 or BRCA2 germline sequence variants, including the novel uncharacterized alteration BRCA1 c.5152+5G>T, which was identified in a HBOC family. CloneSeq provided a high-resolution picture of all the transcripts induced by BRCA1 c.5152+5G>T, indicating it results in significant levels of exon skipping. This analysis proved to be important for the classification of BRCA1 c.5152+5G>T as a clinically actionable likely pathogenic variant. Reclassifications such as these are fundamental in order to offer preventive measures, targeted treatment, and pre-symptomatic screening to the correct individuals.

6.
Oncotarget ; 7(42): 68206-68228, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27626691

ABSTRACT

The development of targeted therapies for both germline and somatic DNA mutations has increased the need for molecular profiling assays to determine the mutational status of specific genes. Moreover, the potential of off-label prescription of targeted therapies favors classifying tumors based on DNA alterations rather than traditional tissue pathology. Here we describe the analytical validation of a custom probe-based NGS tumor panel, TumorNext, which can detect single nucleotide variants, small insertions and deletions in 142 genes that are frequently mutated in somatic and/or germline cancers. TumorNext also detects gene fusions and structural variants, such as tandem duplications and inversions, in 15 frequently disrupted oncogenes and tumor suppressors. The assay uses a matched control and custom bioinformatics pipeline to differentiate between somatic and germline mutations, allowing precise variant classification. We tested 170 previously characterized samples, of which > 95% were formalin-fixed paraffin embedded tissue from 8 different cancer types, and highlight examples where lack of germline status may have led to the inappropriate prescription of therapy. We also describe the validation of the Affymetrix OncoScan platform, an array technology for high resolution copy number variant detection for use in parallel with the NGS panel that can detect single copy amplifications and hemizygous deletions. We analyzed 80 previously characterized formalin-fixed paraffin-embedded specimens and provide examples of hemizygous deletion detection in samples with known pathogenic germline mutations. Thus, the TumorNext combined approach of NGS and OncoScan potentially allows for the identification of the "second hit" in hereditary cancer patients.


Subject(s)
Computational Biology/methods , DNA Copy Number Variations , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , DNA Mutational Analysis/methods , Gene Frequency , Genetic Predisposition to Disease/genetics , Humans , Mutation , Neoplasms/pathology , Paraffin Embedding , Polymorphism, Single Nucleotide , Reproducibility of Results , Tissue Fixation
7.
Neuron ; 61(1): 113-25, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19146817

ABSTRACT

An activity-dependent form of intermediate memory (AD-ITM) for sensitization is induced in Aplysia by a single tail shock that gives rise to plastic changes (AD-ITF) in tail sensory neurons (SNs) via the interaction of action potential firing in the SN coupled with the release of serotonin in the CNS. Activity-dependent long-term facilitation (AD-LTF, lasting >24hr) requires protein synthesis dependent persistent mitogen-activated protein kinase (MAPK) activation and translocation to the SN nucleus. We now show that the induction of the earlier temporal phase (AD-ITM and AD-ITF), which is translation and transcription independent, requires the activation of a compartmentally distinct novel signaling cascade that links second messengers, MAPK and PKC into a unified pathway within tail SNs. Since both AD-ITM and AD-LTM require MAPK activity, these collective findings suggest that presynaptic SNs route the flow of molecular information to distinct subcellular compartments during the induction of activity-dependent long-lasting memories.


Subject(s)
Aplysia , MAP Kinase Signaling System/physiology , Memory/physiology , Mitogen-Activated Protein Kinases/metabolism , Neuronal Plasticity/physiology , Sensory Receptor Cells/physiology , Animals , Aplysia/anatomy & histology , Aplysia/physiology , Conditioning, Classical/physiology , Cyclic AMP/metabolism , Enzyme Activation , GTP-Binding Proteins/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/genetics , Protein Kinase C/metabolism , Protein-Tyrosine Kinases/metabolism , Sensory Receptor Cells/cytology , Serotonin/metabolism , Time Factors
8.
Proc Natl Acad Sci U S A ; 103(38): 14206-10, 2006 Sep 19.
Article in English | MEDLINE | ID: mdl-16963562

ABSTRACT

BDNF, which acts through tropomyosin-related kinase B (TrkB) receptors during mammalian development, also enhances long-term synaptic facilitation (LTF) in adult Aplysia. Because LTF is a substrate for long-term memory (LTM) in Aplysia, we examined the requirement of a secreted TrkB ligand in LTM formation at molecular, synaptic, and behavioral levels. Using an extracellular fusion protein that sequesters secreted TrkB ligands, we show that TrkB function is required for serotonin-induced activation of extracellular signal-regulated kinase, tail nerve shock-induced LTF in the CNS, and tail shock-induced LTM but is not necessary for short-term synaptic facilitation or short-term memory. These results show that a secreted growth factor, acting through a TrkB signaling cascade, is critical for the induction of long-lasting plasticity and memory formation in Aplysia.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Long-Term Potentiation/physiology , Memory/physiology , Neuronal Plasticity/physiology , Receptor, trkB/metabolism , Animals , Aplysia/anatomy & histology , Aplysia/physiology , Behavior, Animal/physiology , Brain-Derived Neurotrophic Factor/metabolism , Electric Stimulation , Enzyme Activation , Intercellular Signaling Peptides and Proteins/metabolism , Ligands , Serotonin/metabolism , Signal Transduction/physiology , Synapses/metabolism , Synaptic Transmission/physiology
9.
Science ; 302(5646): 842-6, 2003 Oct 31.
Article in English | MEDLINE | ID: mdl-14593172

ABSTRACT

Functional analysis of a genome requires accurate gene structure information and a complete gene inventory. A dual experimental strategy was used to verify and correct the initial genome sequence annotation of the reference plant Arabidopsis. Sequencing full-length cDNAs and hybridizations using RNA populations from various tissues to a set of high-density oligonucleotide arrays spanning the entire genome allowed the accurate annotation of thousands of gene structures. We identified 5817 novel transcription units, including a substantial amount of antisense gene transcription, and 40 genes within the genetically defined centromeres. This approach resulted in completion of approximately 30% of the Arabidopsis ORFeome as a resource for global functional experimentation of the plant proteome.


Subject(s)
Arabidopsis/genetics , Genome, Plant , RNA, Messenger/genetics , RNA, Plant/genetics , Transcription, Genetic , Chromosome Mapping , Chromosomes, Plant/genetics , Cloning, Molecular , Computational Biology , DNA, Complementary/genetics , DNA, Intergenic , Expressed Sequence Tags , Gene Expression Profiling , Genes, Plant , Genomics , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Open Reading Frames , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...