Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 20(5): e1012204, 2024 May.
Article in English | MEDLINE | ID: mdl-38709834

ABSTRACT

Since the COVID-19 outbreak, raccoon dogs have been suggested as a potential intermediary in transmitting SARS-CoV-2 to humans. To understand their role in the COVID-19 pandemic and the species barrier for SARS-CoV-2 transmission to humans, we analyzed how their ACE2 protein interacts with SARS-CoV-2 spike protein. Biochemical data showed that raccoon dog ACE2 is an effective receptor for SARS-CoV-2 spike protein, though not as effective as human ACE2. Structural comparisons highlighted differences in the virus-binding residues of raccoon dog ACE2 compared to human ACE2 (L24Q, Y34H, E38D, T82M, R353K), explaining their varied effectiveness as receptors for SARS-CoV-2. These variations contribute to the species barrier that exists between raccoon dogs and humans regarding SARS-CoV-2 transmission. Identifying these barriers can help assess the susceptibility of other mammals to SARS-CoV-2. Our research underscores the potential of raccoon dogs as SARS-CoV-2 carriers and identifies molecular barriers that affect the virus's ability to jump between species.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Raccoon Dogs , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Humans , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , COVID-19/virology , COVID-19/transmission , COVID-19/metabolism , Protein Binding , Raccoon Dogs/virology , Receptors, Virus/metabolism , Receptors, Virus/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
2.
Elife ; 122023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991488

ABSTRACT

SARS-CoV-2 spike protein plays a key role in mediating viral entry and inducing host immune responses. It can adopt either an open or closed conformation based on the position of its receptor-binding domain (RBD). It is yet unclear what causes these conformational changes or how they influence the spike's functions. Here, we show that Lys417 in the RBD plays dual roles in the spike's structure: it stabilizes the closed conformation of the trimeric spike by mediating inter-spike-subunit interactions; it also directly interacts with ACE2 receptor. Hence, a K417V mutation has opposing effects on the spike's function: it opens up the spike for better ACE2 binding while weakening the RBD's direct binding to ACE2. The net outcomes of this mutation are to allow the spike to bind ACE2 with higher probability and mediate viral entry more efficiently, but become more exposed to neutralizing antibodies. Given that residue 417 has been a viral mutational hotspot, SARS-CoV-2 may have been evolving to strike a balance between infection potency and immune evasion, contributing to its pandemic spread.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding
3.
Life (Basel) ; 13(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36983998

ABSTRACT

Two variants of porcine reproductive and respiratory syndrome virus (PRRSV), PRRSV 1 and PRRSV 2, have caused abortion in pregnant sows and respiratory distress in nursery pigs worldwide. PRRSV 2 has been thoroughly researched in Taiwan since 1993; however, the first case of PRRSV 1 was not reported until late 2018. To decipher the genetic characteristics of PRRSV 1 in Taiwan, open reading frame 5 (ORF5) genes of PRRSV 1 strains collected from 11 individual pig farms in 2019-2020 were successfully sequenced. All Taiwanese ORF5 sequences were closely related to Spanish-like PRRSV strains, which are considered to share a common evolutionary origin with the strain used for the PRRSV 1 vaccine. Analyses of amino acid (aa) and non-synonymous substitutions showed that genetic variations resulted in numerously specific codon mutations scattered across the neutralizing epitopes within the ORF5 gene. The PRRSV 1 challenge experiment disclosed the pathogenetic capability of the NPUST2789 isolate in nursery pigs. These findings provide comprehensive knowledge of the molecular diversity of the PRRSV 1 variant in local Taiwanese fields and facilitate the development of suitable immunization programs against this disease.

4.
Virus Evol ; 7(2): veab096, 2021.
Article in English | MEDLINE | ID: mdl-34858636

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a highly transmissible intestinal pathogen that causes mild to severe clinical symptoms, such as anorexia, vomiting, and watery diarrhea in pigs. By comparing the genetic sequences of the spike glycoprotein between historical and current Taiwanese PDCoV strains, we identified a novel PDCoV variant that displaced the PDCoV responsible for the 2015 epidemic. This PDCoV variant belongs to a young population within the US lineage, and infected pigs carry high concentrations of the virus. It also has several critical point mutations and an amino acid insertion at position 52 that may enhance the affinity between the B-cell epitopes located in the N-terminal domain with its complementarity regions, consequently facilitating binding or penetration between the fusion peptide and cellular membrane. Furthermore, viral protein structure prediction demonstrated that these amino acid changes may change the ability of the virus to bind to the receptor, which may consequently alter virus infectivity. Our results hence suggest the emergence of new PDCoV strains in Taiwan with the potential for greater transmission and pathogenesis.

5.
Viruses ; 13(7)2021 07 11.
Article in English | MEDLINE | ID: mdl-34372544

ABSTRACT

Porcine deltacoronavirus (PDCoV), a highly transmissible intestinal pathogen, causes mild to severe clinical symptoms, such as anorexia, vomiting and watery diarrhea, in piglets and/or sows. Since the first report of PDCoV infection in Hong Kong in 2012, the virus has readily disseminated to North America and several countries in Asia. However, to date, no unified phylogenetic classification system has been developed. To fill this gap, we classified historical PDCoV reference strains into two major genogroups (G-I and G-II) and three subgroups (G-II-a, G-II-b and G-II-c). In addition, no genetic research on the whole PDCoV genome or spike gene has been conducted on isolates from Taiwan so far. To delineate the genetic characteristics of Taiwanese PDCoV, we performed whole-genome sequencing to decode the viral sequence. The PDCoV/104-553/TW-2015 strain is closely related to the G-II-b group, which is mainly composed of PDCoV variants from China. Additionally, various mutations in the Taiwanese PDCoV (104-553/TW-2015) strain might be linked to the probability of recombination with other genogroups of PDCoVs or other porcine coronaviruses. These results represent a pioneering phylogenetic characterization of the whole genome of a PDCoV strain isolated in Taiwan in 2015 and will potentially facilitate the development of applicable preventive strategies against this problematic virus.


Subject(s)
Deltacoronavirus/classification , Deltacoronavirus/genetics , Swine/virology , Animals , Coronavirus/genetics , Coronavirus Infections/virology , Diarrhea/genetics , Diarrhea/virology , Feces/virology , Phylogeny , Swine Diseases/virology , Taiwan , Whole Genome Sequencing/methods
6.
Vaccines (Basel) ; 9(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919161

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS), which is caused by a highly transmissible pathogen called porcine reproductive and respiratory syndrome virus (PRRSV), has caused severe problems, including reproductive disorders in sows and respiratory symptoms in nursery pigs worldwide, since the early 1990s. However, currently available PRRSV vaccines do not supply complete immunity to confront the viral infection. Elicitation of PRRSV-specific neutralizing antibodies (NAbs) during the preinfectious period has been deemed to be a feasible strategy to modulate this virus, especially in farms where nursery pigs are seized with PRRSVs. A total of 180 piglets in a farrow-to-finish farm that had a natural outbreak of PRRS were distributed into three groups based on the different PRRSV NAbs levels in their dams. In the present study, piglets that received superior maternal-transferred NAbs showed delayed and relatively slight viral loads in serum and, on the whole, higher survival rates against wild PRRSV infections. A positive correlation of maternal NAbs between sows and their piglets was identified; moreover, high NAbs titers in piglets can last for at least 4 weeks. These results provide updated information to develop an appropriate immune strategy for breeding and for future PRRSV control under field conditions.

7.
Vaccines (Basel) ; 8(1)2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32102459

ABSTRACT

Intramuscular (IM) immunization is generally considered incapable of generating a protective mucosal immune response. In the swine industry, attempts to develop a safe and protective vaccine for controlling porcine epidemic diarrhea (PED) via an IM route of administration have been unsuccessful. In the present study, porcine chemokine ligand proteins CCL25, 27, and 28 were constructed and stably expressed in the mammalian expression system. IM co-administration of inactivated PEDV (iPEDV) particles with different CC chemokines and Freund's adjuvants resulted in recruiting CCR9+ and/or CCR10+ inflammatory cells to the injection site, thereby inducing superior systemic PEDV specific IgG, fecal IgA, and viral neutralizing antibodies in pigs. Moreover, pigs immunized with iPEDV in combination with CCL25 and CCL28 elicited substantial protection against a virulent PEDV challenge. We show that the porcine CC chemokines could be novel adjuvants for developing IM vaccines for modulating mucosal immune responses against mucosal transmissible pathogens in pigs.

8.
Transbound Emerg Dis ; 67(1): 417-430, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31538715

ABSTRACT

New variants of porcine epidemic diarrhoea virus (PEDV) causing a highly contagious intestinal disease, porcine epidemic diarrhoea virus (PED), have resulted in high mortality in suckling pigs across several countries since 2013. After 2015, the prevalence of the genogroup 2b (G2b) PEDVs decreased in a cyclical pattern with endemic seasonal outbreaks occasionally seen. To better understand the genetic diversity of PEDVs recently circulating in Taiwan, full-length spike (S) genes of 31 PEDV strains from 28 pig farms collected during 2016-2018 were sequenced. While the majority of S gene sequences (from 27/28 farms) were closely related to the previous G2b PEDV strains, increased genetic diversities leading to several nonsynonymous mutations scattering in the neutralizing epitopes of the S gene were detected in PEDVs recently circulating in Taiwan. Furthermore, novel recombinant variants, the PEDV TW/Yunlin550/2018 strains exhibiting recombinant events between a previously isolated Taiwan PEDV G2b strain and a wild-type PEDV G1a strain, were identified and further classified into a new genogroup, G1c. These results provide updated information about the genetic diversity of currently circulating PEDVs in the field and could help to develop more suitable strategies for controlling this disease.


Subject(s)
Coronavirus Infections/veterinary , Disease Outbreaks/veterinary , Genetic Variation , Porcine epidemic diarrhea virus/genetics , Spike Glycoprotein, Coronavirus/genetics , Swine Diseases/virology , Animals , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Farms , Female , Genotype , Phylogeny , Porcine epidemic diarrhea virus/isolation & purification , Swine , Swine Diseases/epidemiology , Swine Diseases/prevention & control , Taiwan/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...