Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 25(9): 2745-2754, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30617132

ABSTRACT

PURPOSE: The CA19-9 biomarker is elevated in a substantial group of patients with pancreatic ductal adenocarcinoma (PDAC), but not enough to be reliable for the detection or diagnosis of the disease. We hypothesized that a glycan called sTRA (sialylated tumor-related antigen) is a biomarker for PDAC that improves upon CA19-9. EXPERIMENTAL DESIGN: We examined sTRA and CA19-9 expression and secretion in panels of cell lines, patient-derived xenografts, and primary tumors. We developed candidate biomarkers from sTRA and CA19-9 in a training set of 147 plasma samples and used the panels to make case-control calls, based on predetermined thresholds, in a 50-sample validation set and a blinded, 147-sample test set. RESULTS: The sTRA glycan was produced and secreted by pancreatic tumors and models that did not produce and secrete CA19-9. Two biomarker panels improved upon CA19-9 in the training set, one optimized for specificity, which included CA19-9 and 2 versions of the sTRA assay, and another optimized for sensitivity, which included 2 sTRA assays. Both panels achieved statistical improvement (P < 0.001) over CA19-9 in the validation set, and the specificity-optimized panel achieved statistical improvement (P < 0.001) in the blinded set: 95% specificity and 54% sensitivity (75% accuracy), compared with 97%/30% (65% accuracy). Unblinding produced further improvements and revealed independent, complementary contributions from each marker. CONCLUSIONS: sTRA is a validated serological biomarker of PDAC that yields improved performance over CA19-9. The new panels may enable surveillance for PDAC among people with elevated risk, or improved differential diagnosis among patients with suspected pancreatic cancer.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/blood , Biomarkers, Tumor/blood , CA-19-9 Antigen/blood , Carcinoma, Pancreatic Ductal/diagnosis , N-Acetylneuraminic Acid/chemistry , Pancreatic Neoplasms/diagnosis , Aged , Animals , Carcinoma, Pancreatic Ductal/blood , Case-Control Studies , Female , Follow-Up Studies , Humans , Male , Mice , Middle Aged , Pancreatic Neoplasms/blood , Prognosis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Mol Cell Proteomics ; 18(1): 28-40, 2019 01.
Article in English | MEDLINE | ID: mdl-30257876

ABSTRACT

The difficulty in uncovering detailed information about protein glycosylation stems from the complexity of glycans and the large amount of material needed for the experiments. Here we report a method that gives information on the isomeric variants of glycans in a format compatible with analyzing low-abundance proteins. On-chip glycan modification and probing (on-chip gmap) uses sequential and parallel rounds of exoglycosidase cleavage and lectin profiling of microspots of proteins, together with algorithms that incorporate glycan-array analyses and information from mass spectrometry, when available, to computationally interpret the data. In tests on control proteins with simple or complex glycosylation, on-chip gmap accurately characterized the relative proportions of core types and terminal features of glycans. Subterminal features (monosaccharides and linkages under a terminal monosaccharide) were accurately probed using a rationally designed sequence of lectin and exoglycosidase incubations. The integration of mass information further improved accuracy in each case. An alternative use of on-chip gmap was to complement the mass spectrometry analysis of detached glycans by specifying the isomers that comprise the glycans identified by mass spectrometry. On-chip gmap provides the potential for detailed studies of glycosylation in a format compatible with clinical specimens or other low-abundance sources.


Subject(s)
Computational Biology/methods , Fetuins/chemistry , Polysaccharides/chemistry , Transferrin/chemistry , Algorithms , Animals , Cattle , Glycosylation , Humans , Mass Spectrometry , Protein Array Analysis
3.
Cell Mol Gastroenterol Hepatol ; 2(2): 201-221.e15, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26998508

ABSTRACT

BACKGROUND AND AIMS: The CA19-9 antigen is the current best biomarker for pancreatic cancer, but it is not elevated in about 25% of pancreatic cancer patients at a cutoff that gives a 25% false-positive rate. We hypothesized that antigens related to the CA19-9 antigen, which is a glycan called sialyl-Lewis A (sLeA), are elevated in distinct subsets of pancreatic cancers. METHODS: We profiled the levels of multiple glycans and mucin glycoforms in plasma from 200 subjects with either pancreatic cancer or benign pancreatic disease, and we validated selected findings in additional cohorts of 116 and 100 subjects, the latter run blinded and including cancers that exclusively were early-stage. RESULTS: We found significant elevations in two glycans: an isomer of sLeA called sialyl-Lewis X, present both in sulfated and non-sulfated forms; and the sialylated form of a marker for pluripotent stem cells, type 1 N-acetyl-lactosamine. The glycans performed as well as sLeA as individual markers and were elevated in distinct groups of patients, resulting in a 3-marker panel that significantly improved upon any individual biomarker. The panel gave 85% sensitivity and 90% specificity in the combined discovery and validation cohorts, relative to 54% sensitivity and 86% specificity for sLeA; and it gave 80% sensitivity and 84% specificity in the independent test cohort, as opposed to 66% sensitivity and 72% specificity for sLeA. CONCLUSIONS: Glycans related to sLeA are elevated in distinct subsets of pancreatic cancers and yield improved diagnostic accuracy over CA19-9.

4.
Plant J ; 84(5): 1005-20, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26496373

ABSTRACT

In plants, lipids of the photosynthetic membrane are synthesized by parallel pathways associated with the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Lipids derived from the two pathways are distinguished by their acyl-constituents. Following this plant paradigm, the prevalent acyl composition of chloroplast lipids suggests that Chlamydomonas reinhardtii (Chlamydomonas) does not use the ER pathway; however, the Chlamydomonas genome encodes presumed plant orthologues of a chloroplast lipid transporter consisting of TGD (TRIGALACTOSYLDIACYLGLYCEROL) proteins that are required for ER-to-chloroplast lipid trafficking in plants. To resolve this conundrum, we identified a mutant of Chlamydomonas deleted in the TGD2 gene and characterized the respective protein, CrTGD2. Notably, the viability of the mutant was reduced, showing the importance of CrTGD2. Galactoglycerolipid metabolism was altered in the tgd2 mutant with monogalactosyldiacylglycerol (MGDG) synthase activity being strongly stimulated. We hypothesize this to be a result of phosphatidic acid accumulation in the chloroplast outer envelope membrane, the location of MGDG synthase in Chlamydomonas. Concomitantly, increased conversion of MGDG into triacylglycerol (TAG) was observed. This TAG accumulated in lipid droplets in the tgd2 mutant under normal growth conditions. Labeling kinetics indicate that Chlamydomonas can import lipid precursors from the ER, a process that is impaired in the tgd2 mutant.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Lipid Metabolism/genetics , Plant Proteins/physiology , Biological Transport , Chlamydomonas reinhardtii/genetics , Chloroplasts/metabolism , Endoplasmic Reticulum/metabolism , Genome, Plant , Mutation , Photosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism
5.
J Proteome Res ; 14(6): 2594-605, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25938165

ABSTRACT

The fucose post-translational modification is frequently increased in pancreatic cancer, thus forming the basis for promising biomarkers, but a subset of pancreatic cancer patients does not elevate the known fucose-containing biomarkers. We hypothesized that such patients elevate glycan motifs with fucose in linkages and contexts different from the known fucose-containing biomarkers. We used a database of glycan array data to identify the lectins CCL2 to detect glycan motifs with fucose in a 3' linkage; CGL2 for motifs with fucose in a 2' linkage; and RSL for fucose in all linkages. We used several practical methods to test the lectins and determine the optimal mode of detection, and we then tested whether the lectins detected glycans in pancreatic cancer patients who did not elevate the sialyl-Lewis A glycan, which is upregulated in ∼75% of pancreatic adenocarcinomas. Patients who did not upregulate sialyl-Lewis A, which contains fucose in a 4' linkage, tended to upregulate fucose in a 3' linkage, as detected by CCL2, but they did not upregulate total fucose or fucose in a 2' linkage. CCL2 binding was high in cancerous epithelia from pancreatic tumors, including areas negative for sialyl-Lewis A and a related motif containing 3' fucose, sialyl-Lewis X. Thus, glycans containing 3' fucose may complement sialyl-Lewis A to contribute to improved detection of pancreatic cancer. Furthermore, the use of panels of recombinant lectins may uncover details about glycosylation that could be important for characterizing and detecting cancer.


Subject(s)
Adenocarcinoma/metabolism , Fucose/metabolism , Lectins/metabolism , Pancreatic Neoplasms/metabolism , Polysaccharides/metabolism , Up-Regulation , Chemokine CCL2/metabolism , Humans , Molecular Probes , Polysaccharides/chemistry
6.
Adv Cancer Res ; 126: 167-202, 2015.
Article in English | MEDLINE | ID: mdl-25727148

ABSTRACT

Recent research has uncovered unexpected ways that glycans contribute to biology, as well as new strategies for combatting disease using approaches involving glycans. To make full use of glycans for clinical applications, we need more detailed information on the location, nature, and dynamics of glycan expression in vivo. Such studies require the use of specimens acquired directly from patients. Effective studies of clinical specimens require low-volume assays, high precision measurements, and the ability to process many samples. Assays using affinity reagents-lectins and glycan-binding antibodies-can meet these requirements, but further developments are needed to make the methods routine and effective. Recent advances in the use of glycan-binding proteins involve improved determination of specificity using glycan arrays; the availability of databases for mining and analyzing glycan array data; lectin engineering methods; and the ability to quantitatively interpret lectin measurements. Here, we describe many of the challenges and opportunities involved in the application of these new approaches to the study of biological samples. The new tools hold promise for developing methods to improve the outcomes of patients afflicted with diseases characterized by aberrant glycan expression.


Subject(s)
Antibodies/metabolism , Biomarkers/analysis , Glycoproteins/metabolism , Lectins/metabolism , Neoplasms/diagnosis , Polysaccharides/metabolism , Protein Array Analysis/methods , Binding Sites , Carrier Proteins/analysis , Humans , Neoplasms/metabolism
7.
Mol Cell Proteomics ; 14(5): 1323-33, 2015 May.
Article in English | MEDLINE | ID: mdl-25733690

ABSTRACT

The sialyl-Lewis A (sLeA) glycan forms the basis of the CA19-9 assay and is the current best biomarker for pancreatic cancer, but because it is not elevated in ∼25% of pancreatic cancers, it is not useful for early diagnosis. We hypothesized that sLeA-low tumors secrete glycans that are related to sLeA but not detectable by CA19-9 antibodies. We used a method called motif profiling to predict that a structural isomer of sLeA called sialyl-Lewis X (sLeX) is elevated in the plasma of some sLeA-low cancers. We corroborated this prediction in a set of 48 plasma samples and in a blinded set of 200 samples. An antibody sandwich assay formed by the capture and detection of sLeX was elevated in 13 of 69 cancers that were not elevated in sLeA, and a novel hybrid assay of sLeA capture and sLeX detected 24 of 69 sLeA-low cancers. A two-marker panel based on combined sLeA and sLeX detection differentiated 109 pancreatic cancers from 91 benign pancreatic diseases with 79% accuracy (74% sensitivity and 78% specificity), significantly better than sLeA alone, which yielded 68% accuracy (65% sensitivity and 71% specificity). Furthermore, sLeX staining was evident in tumors that do not elevate plasma sLeA, including those with poorly differentiated ductal adenocarcinoma. Thus, glycan-based biomarkers could characterize distinct subgroups of patients. In addition, the combined use of sLeA and sLeX, or related glycans, could lead to a biomarker panel that is useful in the clinical diagnosis of pancreatic cancer. Précis: This paper shows that a structural isomer of the current best biomarker for pancreatic cancer, CA19-9, is elevated in the plasma of patients who are low in CA19-9, potentially enabling more comprehensive detection and classification of pancreatic cancers.


Subject(s)
Carcinoma, Pancreatic Ductal/blood , Oligosaccharides/blood , Pancreatic Neoplasms/blood , Antibodies, Monoclonal/chemistry , Antigens, Tumor-Associated, Carbohydrate/analysis , Antigens, Tumor-Associated, Carbohydrate/chemistry , Antigens, Tumor-Associated, Carbohydrate/genetics , CA-19-9 Antigen , Carbohydrate Sequence , Carcinoma, Pancreatic Ductal/chemistry , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/immunology , Gene Expression , Humans , Immunoassay , Molecular Sequence Data , Oligosaccharides/chemistry , Oligosaccharides/immunology , Pancreatic Neoplasms/chemistry , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/immunology , Polysaccharides/chemistry , Polysaccharides/immunology , Sensitivity and Specificity , Sialyl Lewis X Antigen
SELECTION OF CITATIONS
SEARCH DETAIL
...