Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35163513

ABSTRACT

Human γD-crystallin (HGDC) is an abundant lens protein residing in the nucleus of the human lens. Aggregation of this and other structural proteins within the lens leads to the development of cataract. Much has been explored on the stability and aggregation of HGDC and where detailed investigation at the atomic resolution was needed, the X-ray structure was used as an initial starting conformer for molecular modeling. In this study, we implemented NMR-solution HGDC structures as starting conformers for molecular dynamics simulations to provide the missing pieces of the puzzle on the very early stages of HGDC unfolding leading up to the domain swap theories proposed by past studies. The high-resolution details of the conformational dynamics also revealed additional insights to possible early intervention for cataractogenesis.


Subject(s)
gamma-Crystallins/chemistry , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Dynamics Simulation , Protein Conformation , Protein Unfolding
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120023, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34098480

ABSTRACT

Cataract is known as one of the leading causes of vision impairment worldwide. While the detailed mechanism of cataratogenesis remains unclear, cataract is believed to be correlated with the aggregation and/or misfolding of human ocular lens proteins called crystallins. A 173-residue structural protein human γD-crystallin is a major γ-crystallin protein in the human eye lens and associated with the development of juvenile and mature-onset cataracts. This work is aimed at investigating the effect of a small molecule, e.g., ortho-vanillin, on human γD-crystallin aggregation upon exposure to ultraviolet-C irradiation. According to the findings of right-angle light scattering, transmission electron microscopy, and gel electrophoresis, ortho-vanillin was demonstrated to dose-dependently suppress ultraviolet-C-triggered aggregation of human γD-crystallin. Results from the synchronous fluorescence spectroscopy, tryptophan fluorescence quenching, and molecular docking studies revealed the structural change of γD-crystallin induced by the interaction/binding between ortho-vanillin and protein. We believe the outcome from this work may contribute to the development of potential therapeutics for cataract.


Subject(s)
Cataract , Lens, Crystalline , gamma-Crystallins , Benzaldehydes , Humans , Molecular Docking Simulation
3.
Int J Biol Macromol ; 98: 159-168, 2017 May.
Article in English | MEDLINE | ID: mdl-28137461

ABSTRACT

Formation of amyloid fibrils has been associated with at least 30 different protein aggregation diseases. The 129-residue polypeptide hen lysozyme, which is structurally homologous to human lysozyme, has been demonstrated to exhibit amyloid fibril-forming propensity in vitro. This study is aimed at exploring the influence of erythrosine B on the in vitro amyloid fibril formation of hen lysozyme at pH 2.0 and 55°C using ThT binding assay, transmission electron microscopy, far-UV circular dichroism absorption spectroscopy, 1-anilinonaphthalene-8-sulfonic acid fluorescence spectroscopy, and synchronous fluorescence study. We found that lysozyme fibrillogenesis was dose-dependently suppressed by erythrosine B. In addition, our far-UV CD and ANS fluorescence data showed that, as compared with the untreated lysozyme control, the α-to-ß transition and exposure of hydrophobic clusters in lysozyme were reduced upon treatment with erythrosine B. Moreover, it could be inferred that the binding of erythrosine B occurred in the vicinity of the tryptophan residues. Finally, molecular docking and molecular dynamics simulations were further employed to gain some insights into the possible binding site(s) and interactions between lysozyme and erythrosine B. We believe the results obtained here may contribute to the development of potential strategies/approaches for the suppression of amyloid fibrillogenesis, which is implicated in amyloid pathology.


Subject(s)
Amyloid/chemistry , Erythrosine/pharmacology , Muramidase/chemistry , Protein Multimerization/drug effects , Animals , Erythrosine/metabolism , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Molecular Dynamics Simulation , Muramidase/metabolism , Protein Structure, Secondary , Temperature
4.
Food Funct ; 7(12): 4898-4907, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27824368

ABSTRACT

More than thirty human proteins and/or peptides can fold incorrectly to form amyloid deposits associated with several protein aggregation diseases. No cure is currently available for treating these diseases. This work is aimed at examining the inhibitory potency of fast green FCF, a biocompatible dye, toward the fibrillogenesis/aggregation of lysozyme. As verified by ThT binding assay along with transmission electron microscopy, fast green FCF was observed to suppress the generation of lysozyme fibrils in a concentration-dependent manner. We next used circular dichroism absorption spectroscopy, ANS fluorescence spectroscopy, and SDS-PAGE to characterize the structural alterations in lysozyme samples upon the addition of fast green FCF. Furthermore, experiments with the addition of fast green FCF at different time points of incubation showed that fast green FCF also exhibited disaggregating activity against the preformed/existing lysozyme fibrils. We believe that the results from this study suggest a potential therapeutic role of biocompatible molecules in treating or preventing protein aggregation diseases.


Subject(s)
Amyloid/chemistry , Lissamine Green Dyes/pharmacology , Muramidase/chemistry , Animals , Benzothiazoles , Chickens , Circular Dichroism , Egg White , Hydrogen-Ion Concentration , Lissamine Green Dyes/chemistry , Thiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...