Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 9234, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37286694

ABSTRACT

The usage of two-dimensional (2D) materials will be very advantageous for many developing spintronic device designs, providing a superior method of managing spin. Non-volatile memory technologies, particularly magnetic random-access memories (MRAMs), characterized by 2D materials are the goal of the effort. A sufficiently large spin current density is indispensable for the writing mode of MRAMs to switch states. How to attain spin current density beyond critical values around 5 MA/cm2 in 2D materials at room temperature is the greatest obstacle to overcome. Here, we first theoretically propose a spin valve based on graphene nanoribbons (GNRs) to generate a huge spin current density at room temperature. The spin current density can achieve the critical value with the help of tunable gate voltage. The highest spin current density can reach 15 MA/cm2 by adjusting the band gap energy of GNRs and exchange strength in our proposed gate-tunable spin-valve. Also, ultralow writing power can be obtained, successfully overcoming the difficulties traditional magnetic tunnel junction-based MRAMs have faced. Furthermore, the proposed spin-valve meets the reading mode criteria and the MR ratios are always higher than 100%. These results may open the feasibility avenues for spin logic devices based on 2D materials.

2.
iScience ; 26(4): 106400, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37034977

ABSTRACT

Traditional photonic systems are endowed with brand new properties owing to the addition of topological physics with light. A conjugated topological cavity-states (CTCS) in one-dimensional photonic systems is presented, which has not only robust light transport but also ultra-high performances, such as high quality factor (high-Q) and perfect transmission. This extraordinary CTCS can address the bottleneck of typical topological photonic systems, which can only achieve robust light transport without maintaining high performance. Furthermore, the CTCS is especially suitable for bio-photonic sensing with high resolution requirements. An ultra-sensitivity of 2000 nm/RIU and a high-Q of 109 for detecting the concentration of SARS-CoV-2 S-glycoprotein solution are obtained. Notably, the CTCS not only opens new possibilities for advanced photonics but also paves the way for high performance in topological photonic devices.

3.
Sci Rep ; 11(1): 11717, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34083654

ABSTRACT

Topological insulators (TI) have extremely high potential in spintronic applications. Here, a topological insulators thin-film (TITF) spin valve with the use of the segment gate-controlled potential exhibits a huge magnetoresistance (MR) value higher than 1000% at room temperature which is more than 50 times the MR of typical topological insulators (TI) spin-valves. A high spin-polarized current is provided by the band structure generated by the tunable segment potential. The results reveal a very large resistance difference between the parallel and antiparallel configurations. The MR effect is strongly influenced by the thin-film thickness, the gate potential, the gate size, and the distribution. The proposed results will help to not only improve the room-temperature performance of the spin-valves but also enhance the applications of magnetic memories and spintronic devices.

4.
Sci Rep ; 11(1): 12104, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34103563

ABSTRACT

The optical properties of topological photonics have attracted much interest recently because its potential applications for robust unidirectional transmission that are immune to scattering at disorder. However, researches on topological series coupled ring resonators (T-SCRR) have been much less discussed. The existence of topological interface-states (TIS) in the T-SCRR is described for the first time in this article. An approach has been developed to achieve this goal via the band structure of dielectric binary ring resonators and the Zak phase of each bandgap. It is found that an ultra-high-Q with complete transmission is obtained by the conjugated topological series coupled ring resonators due to the excitation of conjugated topological interface-states, which is different from those in conventional TIS. Furthermore, the problem of transmission decreases resulting from high-Q increases in the traditional photonic system is significantly improved by this approach. These findings could pave a novel path for developing advanced high-Q filters, optical sensors, switches, resonators, communications and quantum information processors.

5.
Sci Rep ; 10(1): 7040, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32341460

ABSTRACT

High quality factor (High-Q) and transmission optical devices are required for various applications in the fields of physics and engineering. Critical for these applications is the realization of a structure with high-Q, complete transmission and small volume. A robust high-Q filter with complete transmission by conjugated topological photonic crystals (CTPC) is presented. The study shows that an ultra-high-Q of more than 108 with complete transmission is obtained by the CTPC with 2 µm long due to the excitation of conjugated topological edge-states (CTES). It is also found that even though the quality factor of resonances increases as the periodic number of multilayers increases, these resonances are still complete transmission. A novel concept of CTES is first proposed in this study and investigated the effect of its topological phenomenon on high quality factor via CTPC. We theoretically realize the robust high-Q and complete transmission in the CTPC, which is different from those in periodic, quasi-periodic, Fabry-Perot photonic crystals and traditional topological photonic crystals (TPC).

6.
J Nanosci Nanotechnol ; 14(10): 8074-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25942926

ABSTRACT

In this study, patterned sapphire substrates are fabricated using nanosphere lithography (NSL) and inductively-coupled-plasma reactive ion etching (ICP-RIE). Polystyrene nanospheres of approximately 600 nm diameter are self-assembled on c-plane sapphire substrates by spin-coating. The diameter of the polystyrene nanospheres is modified to adjust the etching mask pitch cycle using oxygen plasma in the ICP-RIE system. A nickel thin film mask of 100 nm thickness is deposited by electron-beam evaporation on a substrate covered with treated nanospheres. The sapphire substrate is then etched in an inductively coupled plasma system using BCl3/Ar gas, to fabricate a structure with a periodic sub-micron hole array with different sidewall intervals. The DC bias voltage, the sapphire etching rate, the surface roughness, are studied as a function of the ICP and the RF power. Different sub-micron hole arrays with spacing cycles of 89 nm, 139 nm and 167 nm are successfully fabricated on the sapphire substrate, using suitable etching parameters.

7.
J Nanosci Nanotechnol ; 12(2): 1641-4, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22630019

ABSTRACT

The sub-micron hole array in a sapphire substrate was fabricated by using nanosphere lithography (NSL) combined with inductively-coupled-plasma reactive ion etching (ICP-RIE) technique. Polystyrene nanospheres of about 600 nm diameter were self-assembled on c-plane sapphire substrates by the spin-coating method. The diameter of polystyrene nanosphere was modified by using oxygen plasma in ICP-RIE system. The size of nanosphere modified by oxygen plasma was varied from 550 to 450 nm with different etching times from 15 to 35 s. The chromium thin film of 100 nm thick was then deposited on the shrunk nanospheres on the substrate by electron-beam evaporation system. The honeycomb type chromium mask can be obtained on the sapphire substrate after the polystyrene nanospheres were removed. The substrate was further etched in two sets of chlorine/Argon and boron trichloride/Argon mixture gases at constant pressure of 50 mTorr in ICP-RIE processes. The 400 nm hole array in diameter can be successfully produced under suitable boron trichloride/Argon gas flow ratio.

8.
J Opt Soc Am A Opt Image Sci Vis ; 24(3): 825-30, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17301870

ABSTRACT

A method for calculating the propagation constants of allowed guided and leaky modes in multilayer planar waveguides is presented. We develop a two-way graph model to describe the tangential fields propagating in the waveguides. According to the special structure of the graph model, it is convenient to employ a topology scheme to derive analytical and closed-form dispersion equations for TE and TM modes. By comparing the dispersion equations formulated by series-expansion methods, approximation methods, and transfer-matrix methods, we find that the use of these equations for finding the eigenmodes has some benefits. First, this method can be easily employed to solve eigenmodes accurately in numerical computation without using series truncation. Second, the dispersion equations are exact. Moreover, all the eigenmodes can be determined according to the formulas without losing roots or causing numerical instability even for a waveguide with thick layers.

SELECTION OF CITATIONS
SEARCH DETAIL
...