Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 42(15): 1233-1246, 2023 04.
Article in English | MEDLINE | ID: mdl-36869126

ABSTRACT

Resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a major challenge for clinicians and patients with non-small cell lung cancer (NSCLC). Serine-arginine protein kinase 1 (SRPK1) is a key oncoprotein in the EGFR/AKT pathway that participates in tumorigenesis. We found that high SRPK1 expression was significantly associated with poor progression-free survival (PFS) in patients with advanced NSCLC undergoing gefitinib treatment. Both in vitro and in vivo assays suggested that SRPK1 reduced the ability of gefitinib to induce apoptosis in sensitive NSCLC cells independently of its kinase activity. Moreover, SRPK1 facilitated binding between LEF1, ß-catenin and the EGFR promoter region to increase EGFR expression and promote the accumulation and phosphorylation of membrane EGFR. Furthermore, we verified that the SRPK1 spacer domain bound to GSK3ß and enhanced its autophosphorylation at Ser9 to activate the Wnt pathway, thereby promoting the expression of Wnt target genes such as Bcl-X. The correlation between SRPK1 and EGFR expression was confirmed in patients. In brief, our research suggested that the SRPK1/GSK3ß axis promotes gefitinib resistance by activating the Wnt pathway and may serve as a potential therapeutic target for overcoming gefitinib resistance in NSCLC.


Subject(s)
Antineoplastic Agents , Arginine Kinase , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Gefitinib/pharmacology , Gefitinib/therapeutic use , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Protein Kinases/metabolism , Arginine Kinase/metabolism , Arginine Kinase/therapeutic use , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , ErbB Receptors/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology
2.
Cell Death Discov ; 8(1): 76, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35190555

ABSTRACT

In this study, we aimed to investigate whether and how Golgi phosphoprotein 3 (GOLPH3) facilitates colon cancer metastasis via the regulation of autophagy and epithelial-mesenchymal transition (EMT). The role GOLPH3 plays in colon cancer metastasis was analyzed using western blotting, immunohistochemistry, transwell, wound-healing, and zebrafish assays. Autophagy and EMT were assessed via RNA-sequencing (RNA-seq) analysis, mRFP-GFP-LC3 reporter assays, and their related markers. Significant associations were found between colon cancer clinical and pathological stages and poor prognosis. GOLPH3 facilitates colon cancer metastasis, both in vitro and in vivo. RNA-seq analysis of GOLPH3-overexpressing and control cell models revealed that GOLPH3 enhances EMT and autophagy. Moreover, examination of autophagic, epithelial, and mesenchymal markers in GOLPH3-overexpressing, -silenced, and control cell lines revealed that GOLPH3 promotes EMT and autophagy. When autophagy was inhibited, GOLPH3-promoted metastasis and EMT were counteracted in vitro and in vivo. Using RNA-seq, PI3K/Akt signaling was identified as the key downstream pathway on which GOLPH3 acts. Mechanistically, we demonstrated that GOLPH3 stimulates autophagy and induces EMT via the suppression of the phosphorylation of protein kinase B (Akt) at Ser473. In summary, GOLPH3 induces autophagy and EMT, promoting metastasis in colon cancer. Beyond this, and in contrast to conventional perspectives, we discovered that GOLPH3 represses the phosphorylation of Akt at Ser473.

SELECTION OF CITATIONS
SEARCH DETAIL
...