Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2404001, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838735

ABSTRACT

High-dielectric-constant elastomers always play a critical role in the development of wearable electronics for actuation, energy storage, and sensing; therefore, there is an urgent need for effective strategies to enhance dielectric constants. The present methods mainly involve adding inorganic or conductive fillers to the polymer elastomers, however, the addition of fillers causes a series of problems, such as large dielectric loss, increased modulus, and deteriorating interface conditions. Here, the elastification of relaxor ferroelectric polymers is investigated through slight cross-linking, aiming to obtain intrinsic elastomers with high-dielectric constants. By cross-linking of the relaxor ferroelectric polymer poly(vinylidene fluoride-ter-trifluoroethylene-ter-chlorofluoroethylene) with a long soft chain cross-linker, a relaxor ferroelectric elastomer with an enhanced dielectric constant is obtained, twice that of the pristine relaxor ferroelectric polymer and surpassing all reported intrinsic elastomers. This elastomer maintains its high-dielectric constant over a wide temperature range and exhibits robust mechanical fatigue resistance, chemical stability, and thermal stability. Moreover, the ferroelectricity of the elastomer remains stable under strains up to 80%. This study offers a simple and effective way to enhance the dielectric constant of intrinsic elastomers, thus facilitating advancements in soft robots, biosensors, and wearable electronics.

2.
RSC Adv ; 14(17): 11771-11774, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38617572

ABSTRACT

There have been scarce reports about stereoscopic design of N-heteroacenes (NHAs), especially for the electron-deficient π-building blocks. Herein, we report the design and synthesis of a U-shaped bis(pyrene-quinoxaline) (BPQ). Single crystal X-ray diffraction reveals the herringbone stacking pattern and the presence of regular and incompletely closed pores.

3.
Angew Chem Int Ed Engl ; 63(19): e202400511, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38488202

ABSTRACT

As ferroelectrics hold significance and application prospects in wearable devices, the elastification of ferroelectrics becomes more and more important. Nevertheless, achieving elastic ferroelectrics requires stringent synthesis conditions, while the elastification of relaxor ferroelectric materials remains unexplored, presenting an untapped potential for utilization in energy storage and actuation for wearable electronics. The thiol-ene click reaction offers a mild and rapid reaction platform to prepare functional polymers. Therefore, we employed this approach to obtain an elastic relaxor ferroelectric by crosslinking an intramolecular carbon-carbon double bonds (CF=CH) polymer matrix with multiple thiol groups via a thiol-ene click reaction. The resulting elastic relaxor ferroelectric demonstrates pronounced relaxor-type ferroelectric behaviour. This material exhibits low modulus, excellent resilience, and fatigue resistance, maintaining a stable ferroelectric response even under strains up to 70 %. This study introduces a straightforward and efficient approach for the construction of elastic relaxor ferroelectrics, thereby expanding the application possibilities in wearable electronics.

4.
J Am Chem Soc ; 146(8): 5614-5621, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38354217

ABSTRACT

With the emergence of wearable electronics, ferroelectrics are poised to serve as key components for numerous potential applications. Currently, intrinsically elastic ferroelectrics featuring a network structure through a precise "slight cross-linking" approach have been realized. The resulting elastic ferroelectrics demonstrate a combination of stable ferroelectric properties and remarkable resilience under various strains. However, challenges arose as the cross-linking temperature was too high when integrating ferroelectrics with other functional materials, and the Curie temperature of this elastic ferroelectric was comparatively low. Addressing these challenges, we strategically chose a poly(vinylidene fluoride)-based copolymer with high vinylidene fluoride content to obtain a high Curie temperature while synthesizing a cross-linker with carbene intermediate for high reactivity to reduce the cross-linking temperature. At a relatively low temperature, we successfully fabricated elastic ferroelectrics through carbene cross-linking. The resulting elastic polymer ferroelectrics exhibit a higher Curie temperature and show a stable ferroelectric response under strains up to 50%. These materials hold significant potential for integration into wearable electronics.

5.
Sci Bull (Beijing) ; 68(22): 2691-2694, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37867060
6.
Science ; 381(6657): 540-544, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37535722

ABSTRACT

Ferroelectrics are an integral component of the modern world and are of importance in electrics, electronics, and biomedicine. However, their usage in emerging wearable electronics is limited by inelastic deformation. We developed intrinsically elastic ferroelectrics by combining ferroelectric response and elastic resilience into one material by slight cross-linking of plastic ferroelectric polymers. The precise slight cross-linking can realize the complex balance between crystallinity and resilience. Thus, we obtained an elastic ferroelectric with a stable ferroelectric response under mechanical deformation up to 70% strain. This elastic ferroelectric exerts potentials in applications related to wearable electronics, such as elastic ferroelectric sensors, information storage, and energy transduction.

7.
ACS Omega ; 6(14): 9319-9333, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33869912

ABSTRACT

In the past decade, the self-healing elastomers based on multiple hydrogen bonding have attracted ample attention due to their rich chemical structures, adjustable mechanical properties, fast healing speed, and high healing efficiency. Through prolonging the service life and fast recovery of the mechanical properties, self-healing elastomers can be potentially applied in the field of wearable electronics, electronic skins, motion tracking, and health monitoring. In this perspective, we will introduce the concept and classification of self-healing materials first, then the hydrogen bonds, and the corresponding position of hydrogen-bonding units in the polymer structures. We will also conclude the potential application of hydrogen bonding-based elastomers. Finally, a summary and outlook will be provided.

8.
Chem Rec ; 21(1): 116-132, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33169940

ABSTRACT

Recently, the development of polycyclic aromatic hydrocarbon (PAH)-based organic co-crystals has attracted increasing interest due to their unique packing modes, optic-electronic properties and various potential applications in electronic, optic-electronic and magnetic devices. In this account, we mainly discuss the definition, classification, packing patterns, preparation methods, and applications of PAH-based co-crystals. Specifically, the main categories of PAH-based organic co-crystals, the frequent methods to prepare them, three main packing patterns, their optical and electrical properties, and their potential applications will be presented. Finally, an outlook of this field is provided.

9.
J Am Chem Soc ; 141(13): 5130-5134, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30860825

ABSTRACT

Four three-dimensional (3D) pyrene-fused N-heteroacenes (P1-P4) are designed and synthesized. From P1 to P4, their lengths are extended in an iterative way, where the thiadiazole unit can be reduced to diamine and the obtained diamines can be further condensed with the diketones with a thiadiazole unit. Compared to their two-dimensional counterparts, the solubility of these 3D pyrene-fused N-heteroacenes is improved by this 3D covalent linkage with two-dimensional units. The diameters of P1-P4 are 3.66, 6.06, 8.48 and 10.88 nm, respectively, and these 3D molecules are characterized by 1H, 13C and 2D NMR, MS, UV-vis, PL and CV spectra. Our strategy shows a promising way to large 3D pyrene-fused N-heteroacenes.

10.
Angew Chem Int Ed Engl ; 57(38): 12375-12379, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30070417

ABSTRACT

Three thiadiazoloquinoxaline-containing long pyrene-fused N-heteroacenes with 8, 13, and 18 rings were designed and synthesized. They show high electron affinities (EAs) of approximately 4.1 eV, which were derived from the onset of the reduction peaks in cyclic voltammetry. Crystal structure analysis revealed in-plane extension through close contacts between thiadiazole units as well as layered packing, enabling in-plane and interlayer electron transport. Organic field-effect transistor devices provided electron mobilities, which suggest a potential way to enhance the charge transport in long N-heteroacenes.

11.
Org Lett ; 19(23): 6300-6303, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29135259

ABSTRACT

Thiadiazoloquinoxaline-fused naphthalenediimides (TQ-f-NDIs) are designed and synthesized. They show high electron affinities (EAs) of ∼4.5 eV. Organic field-effect transistor (OFET) devices, fabricated by dip-coating, provided maximum high electron mobilities of 0.03 cm2/(V·s) with an on/off ratio of 2 × 105.

SELECTION OF CITATIONS
SEARCH DETAIL
...