Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 20608, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663855

ABSTRACT

Heat stress can significantly affect the immune function of the animal body. Heat stress stimulates oxidative stress in intestinal tissue and suppresses the immune responses of mice. The protecting effects of chitosan on heat stress induced colitis have not been reported. Therefore, the aim of this study was to investigate the protective effects of chitosan on immune function in heat stressed mice. Mice were exposed to heat stress (40 °C per day for 4 h) for 14 consecutive days. The mice (C57BL/6J), were randomly divided into three groups including: control group, heat stress, Chitosan group (LD: group 300 mg/kg/day, MD: 600 mg/kg/day, HD: 1000 mg/kg/day). The results showed that tissue histology was improved in chitosan groups than heat stress group. The current study showed that the mice with oral administration of chitosan groups had improved body performance as compared with the heat stress group. The results also showed that in chitosan treated groups the production of HSP70, TLR4, p65, TNF-α, and IL-10 was suppressed on day 1, 7, and 14 as compared to the heat stress group. In addition Claudin-2, and Occludin mRNA levels were upregulated in mice receiving chitosan on day 1, 7, and 14 of heat stress. Furthermore, the IL-6, IL-10, and TNF-α plasma levels were down-regulated on day 1, 7, and 14 of heat stress in mice receiving the oral administration of chitosan. In conclusion, the results showed that chitosan has an anti-inflammatory ability to tolerate hot environmental conditions.


Subject(s)
Chitosan/pharmacology , Heat-Shock Response/immunology , Heat-Shock Response/physiology , Animals , Chitosan/metabolism , Colitis/drug therapy , Colitis/immunology , Colitis/metabolism , Cytokines/analysis , Cytokines/blood , Heat-Shock Response/drug effects , Inflammation , Intestines/pathology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/drug effects , NF-kappa B/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/metabolism
2.
Int Immunopharmacol ; 99: 107727, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34426115

ABSTRACT

Heat stress has severe implications on the health of mice involving intestinal mucosal barrier damage and dysregulated mucosal immune response. This study was designed with long-term heat stress to detect the protective effect of terpinen4-ol on body weight, colon length, organ index, morphological structure, inflammatory cytokines expression, Claudin-2, Occludin, and TLR4 signaling pathway of colonic tissue in mice under heat stress. A study found that oral administration of terpinen4-ol helped against mortality and intestinal inflammation in a mouse model of acute colitis induced by heat stress (40 °C per day for 4 h) exposed for 14 consecutive days. The mice were divided into five groups including control, heat stress, terpinen4-ol low dose (TER LD: 5 mg/kg), medium dose (TER MD: 10 mg/kg), and high dose (TER HD: 20 mg/kg) group. Our study showed that the heat-stress terpinen4-ol group had improved body weight, colon length, and organ index, the number of white blood cells, lymphocytes, and neutrophils in the blood as compared to the heat stress group. In addition, results showed that heat stress upregulated the expression of TLR4, p65, TNF-α, and IL-10. While, in mice receiving the oral administration of terpinen4-ol, the production of TNF-α, IL-10, TLR4, and p65 was suppressed on day 1, 7, and 14 of heat stress. In addition Claudin-2, Occludin mRNA levels were upregulated in mice receiving terpinen4-ol on day 1, 7, and 14 of heat stress. Furthermore, the IL-6, IL-10, TNF-α serum levels were also upregulated in mice under heat stress, but in mice receiving the oral administration of terpinen4-ol, the IL-6, IL-10, TNF-α level was down-regulated on day 1, 7, and 14 of heat stress. Histomorphological examination found that as compared to the control group, the muscle layer thickness and villi height of mice in the heat stress group were significantly reduced, while the changes of the above indicators in the terpinene4-ol groups were improved than those in the heat stress group. In conclusion, the terpinen4-ol has a protective effect on colonic tissue damage induced by heat stress.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Heat-Shock Response/drug effects , Terpenes/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Claudins/genetics , Colon/drug effects , Colon/metabolism , Colon/pathology , Cytokines/blood , Cytokines/genetics , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Leukocyte Count , Leukocytes/drug effects , Male , Mice, Inbred C57BL , NF-kappa B , Occludin/genetics , Terpenes/pharmacology , Toll-Like Receptor 4/genetics , Transcription Factor RelA/genetics
3.
BMC Vet Res ; 16(1): 286, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32787853

ABSTRACT

BACKGROUND: With evidence of warming climates, it is important to understand the effects of heat stress in farm animals in order to minimize production losses. Studying the changes in the brain proteome induced by heat stress may aid in understanding how heat stress affects brain function. The hypothalamus is a critical region in the brain that controls the pituitary gland, which is responsible for the secretion of several important hormones. In this study, we examined the hypothalamic protein profile of 10 pigs (15 ± 1 kg body weight), with five subjected to heat stress (35 ± 1 °C; relative humidity = 90%) and five acting as controls (28 ± 3 °C; RH = 90%). RESULT: The isobaric tags for relative and absolute quantification (iTRAQ) analysis of the hypothalamus identified 1710 peptides corresponding to 360 proteins, including 295 differentially expressed proteins (DEPs), 148 of which were up-regulated and 147 down-regulated, in heat-stressed animals. The Ingenuity Pathway Analysis (IPA) software predicted 30 canonical pathways, four functional groups, and four regulatory networks of interest. The DEPs were mainly concentrated in the cytoskeleton of the pig hypothalamus during heat stress. CONCLUSIONS: In this study, heat stress significantly increased the body temperature and reduced daily gain of body weight in pigs. Furthermore, we identified 295 differentially expressed proteins, 147 of which were down-regulated and 148 up-regulated in hypothalamus of heat stressed pigs. The IPA showed that the DEPs identified in the study are involved in cell death and survival, cellular assembly and organization, and cellular function and maintenance, in relation to neurological disease, metabolic disease, immunological disease, inflammatory disease, and inflammatory response. We hypothesize that a malfunction of the hypothalamus may destroy the host physical and immune function, resulting in decreased growth performance and immunosuppression in heat stressed pigs.


Subject(s)
Heat-Shock Response , Hypothalamus/metabolism , Proteomics , Swine, Miniature/physiology , Animals , Body Temperature/physiology , Male , Swine , Weight Gain/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...