Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 42: 128010, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33811992

ABSTRACT

Myeloperoxidase (MPO), a critical enzyme in antimicrobial host-defense, has been implicated in chronic inflammatory diseases such as coronary artery disease. The design and evaluation of MPO inhibitors for the treatment of cardiovascular disease are reported herein. Starting with the MPO and triazolopyridine 3 crystal structure, novel inhibitors were designed incorporating a substituted pyrazole, which allowed for substituents to interact with hydrophobic and hydrophilic patches in the active site. SAR exploration of the substituted pyrazoles led to piperidine 17, which inhibited HOCl production from activated neutrophils with an IC50 value of 2.4 µM and had selectivity against thyroid peroxidase (TPO). Optimization of alkylation chemistry on the pyrazole nitrogen facilitated the preparation of many analogs, including macrocycles designed to bridge two hydrophobic regions of the active site. Multiple macrocyclization strategies were pursued to prepare analogs that optimally bound to the active site, leading to potent macrocyclic MPO inhibitors with TPO selectivity, such as compound 30.


Subject(s)
Enzyme Inhibitors/pharmacology , Macrocyclic Compounds/pharmacology , Peroxidase/antagonists & inhibitors , Pyrazoles/pharmacology , Small Molecule Libraries/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Molecular Structure , Peroxidase/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 28(23-24): 3721-3725, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30348490

ABSTRACT

Endothelial lipase (EL) inhibitors have been shown to elevate HDL-C levels in pre-clinical murine models and have potential benefit in prevention and treatment of cardiovascular diseases. Modification of the 1-ethyl-3-hydroxy-1,5-dihydro-2H-pyrrol-2-one (DHP) lead, 1, led to the discovery of a series of potent tetrahydropyrimidinedione (THP) EL inhibitors. Synthesis and SAR studies including modification of the amide group, together with changes on the pyrimidinone core led to a series of arylcycloalkyl, indanyl, and tetralinyl substituted 5-amino or 5-hydroxypyrimidinedione-4-carboxamides. Several compounds were advanced to PK evaluation. Among them, compound 4a was one of the most potent with measurable ELHDL hSerum potency and compound 3g demonstrated the best overall pharmacokinetic parameters.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Lipase/antagonists & inhibitors , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Animals , Cholesterol, HDL/blood , Cholesterol, HDL/metabolism , Enzyme Inhibitors/blood , Enzyme Inhibitors/chemical synthesis , Humans , Lipase/blood , Lipase/metabolism , Mice , Models, Molecular , Pyrimidinones/blood , Pyrimidinones/chemical synthesis , Structure-Activity Relationship
3.
ChemMedChem ; 9(10): 2327-43, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24989964

ABSTRACT

Current antithrombotic discovery efforts target compounds that are highly efficacious in thrombus reduction with less bleeding liability than the standard of care. Preclinical data suggest that P2Y1 antagonists may have lower bleeding liabilities than P2Y12 antagonists while providing similar antithrombotic efficacy. This article describes our continuous SAR efforts in a series of 7-hydroxyindolinyl diaryl ureas. When dosed orally, 4-trifluoromethyl-7-hydroxy-3,3-dimethylindolinyl analogue 4 was highly efficacious in a model of arterial thrombosis in rats with limited bleeding. The chemically labile CF3 group in 4 was then transformed to various groups via a novel one-step synthesis, yielding a series of potent P2Y1 antagonists. Among them, the 4-benzothiazole-substituted indolines had desirable PK properties in rats, specifically, low clearance and small volume of distribution. In addition, compound 40 had high i.v. exposure and modest bioavailability, giving it the best overall profile.


Subject(s)
Purinergic P2Y Receptor Antagonists/pharmacology , Urea/analogs & derivatives , Animals , Humans , Magnetic Resonance Spectroscopy , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Spectrometry, Mass, Electrospray Ionization , Urea/pharmacokinetics , Urea/pharmacology
4.
Bioorg Med Chem Lett ; 24(11): 2481-5, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24767843

ABSTRACT

Blockade of the P2Y1 receptor is important to the treatment of thrombosis with potentially improved safety margins compared with P2Y12 receptor antagonists. Investigation of a series of urea surrogates of the diaryl urea lead 3 led to the discovery of 2-amino-1,3,4-thiadiazoles in the 7-hydroxy-N-neopentyl spiropiperidine indolinyl series as potent P2Y1 receptor antagonists, among which compound 5a was the most potent and the first non-urea analog with platelet aggregation (PA) IC50 less than 0.5 µM with 10 µM ADP. Several 2-amino-1,3,4-thiadiazole analogs such as 5b and 5f had a more favorable pharmacokinetic profile, such as higher Ctrough, lower Cl, smaller Vdss, and similar bioavailability compared with 3.


Subject(s)
Indoles/chemistry , Piperidines/chemistry , Receptors, Purinergic P2Y1/metabolism , Thiadiazoles/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Indoles/administration & dosage , Molecular Structure , Piperidines/administration & dosage , Rats , Structure-Activity Relationship , Thiadiazoles/administration & dosage , Thiadiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...