Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(19): 24442-24452, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38710507

ABSTRACT

Boosting the anion redox reaction opens up a possibility of further capacity enhancement on transition-metal-ion redox-only layer-structured cathodes for sodium-ion batteries. To mitigate the deteriorating impact on the internal and surface structure of the cathode caused by the inevitable increase in the operation voltage, probing a solution to promote the bulk-phase crystal structure stability and surface chemistry environment to further facilitate the electrochemical performance enhancement is a key issue. A dual modification strategy of establishing an anion redox hybrid activation trigger agent inside the crystal structure in combination with surface oxide coating is successfully developed. P2-type layer structure cathode materials with Zn/Li (Na-O-Zn@Na-O-Li) anion redox hybrid triggers and a ZnO coating layer possess superior capacity and cycle performance, along with outstanding structural stability, decreased Mn-ion dissolution effect, and less crystal particle cracking during the cycling process. This study represents a facile modification solution to perform structure optimization and property enhancement toward high-performance layered structure cathode materials with anion redox features in sodium-ion batteries.

2.
Anal Chem ; 96(19): 7487-7496, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38695134

ABSTRACT

Cinchona alkaloid derivatives as Brønsted base catalysts have attracted considerable attention in the field of asymmetric catalysis. However, their potential application as chiral solvating agents has not been described. In this research, we investigated the use of the Cinchona alkaloid dimer, namely, (DHQ)2PHAL, as a chiral solvating agent for discerning various mandelic acid derivatives through 1H NMR spectroscopy. The addition of catalytic amounts of DMAP facilitated this process. Our experimental results demonstrate that dimeric (DHQ)2PHAL exhibits remarkable chiral discrimination properties regarding the diagnostic split protons of 1H NMR signals (including 24 examples, up to 0.321 ppm). Furthermore, it serves as an excellent chiral discriminating agent and provides good resolution for racemic chiral phosphoric acid as determined by 31P NMR spectroscopy. The quality of enantiodifferentiation has also been evaluated by means of the parameter "resolution (Rs)". Significantly, this class of CSAs based on (alkaloid)2linker systems with an azaaromatic linker can be directly employed, which is commercially available in an enantiopure form at very low cost and exhibits promising potential in determining the enantiopurity of α-hydroxy acids by chemoselective and biocatalytic reactions.

3.
ACS Appl Mater Interfaces ; 15(51): 59475-59481, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38105603

ABSTRACT

Large quantities of spent lithium-ion batteries (LIBs) will inevitably be generated in the near future because of their wide application in many fields. It will cause not only resource waste but also environmental pollution if these spent batteries are not properly handled. Until now, the recycling of spent lithium manganate batteries has centered on high-valuable elements such as lithium; however, manganese element and current collector Al foil have not yet attracted wide attention. In this work, aluminum-doped manganese dioxide was synthesized by overall recycling cathode active materials and current collector Al foil from a spent lithium manganate battery. Employing such aluminum-doped manganese dioxide as the cathode material of aqueous Zn batteries, it displays better electrochemical performance than manganese dioxide prepared by only recycling the cathode active materials. The overall recycling not only simplifies the recycling process but also realizes high-value recycling of spent lithium manganate batteries. We offer new tactics for overall recycling of cathodes from spent LIBs and designing high-performance manganese dioxide cathodes for aqueous Zn batteries.

4.
Ibrain ; 9(3): 270-280, 2023.
Article in English | MEDLINE | ID: mdl-37786761

ABSTRACT

This study aimed to explore the method of culture of spinal cord neurons (SPNs) in vitro and to provide prerequisites for studying the molecular mechanism and pharmacological mechanism of spinal cord injury and repair. The spinal cord tissues of neonatal Sprague-Dawley rats were taken and digested by trypsin, followed by cytarabine (Ara-C) to inhibit the proliferation of heterogeneous cells, differential velocity adhesion, and natural growth in neuron-specific medium. Then, the morphology of SPNs was observed. Ara-C treatment inhibited the growth of heterogeneous cells and the growth of spinal neurons. Using the differential velocity adhesion method, it was found that the adhesion time of heterogeneous cells and SPNs was not significantly different, and it could not separate neurons and heterogeneous cells well. A large number of mixed cells gathered and floated, and died on the 18th day. Compared with the 20th day, the cell viability of the 18th day was better (p < 0.001). The natural growth and culture of SPNs in Neurobasal-A medium can yield neurons of higher purity and SPNs from the 12th day to the 18th day can be selected for related in vitro cell experiments.

5.
Angew Chem Int Ed Engl ; 62(46): e202312310, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37795830

ABSTRACT

Na2 Ti6 O13 (NTO) with high safety has been regarded as a promising anode candidate for sodium-ion batteries. In the present study, integrated modification of migration channels broadening, charge density re-distribution, and oxygen vacancies regulation are realized in case of Nb-doping and have obtained significantly enhanced cycling performance with 92 % reversible capacity retained after 3000 cycles at 3000 mA g-1 . Moreover, unexpected low-temperature performance with a high discharge capacity of 143 mAh g-1 at 100 mA g-1 under -15 °C is also achieved in the full cell. Theoretical investigation suggests that Nb preferentially replaces Ti3 sites, which effectively improves structural stability and lowers the diffusion energy barrier. What's more important, both the in situ X-ray diffraction (XRD) and in situ Raman furtherly confirm the robust spring effect of the Ti-O bond, making special charge compensation mechanism and respective regulation strategy to conquer the sluggish transport kinetics and low conductivity, which plays a key role in promoting electrochemical performance.

6.
Ibrain ; 8(1): 93-99, 2022.
Article in English | MEDLINE | ID: mdl-37786412

ABSTRACT

The objective of this study was to compare the efficiency of trypsin and papain in neuronal digestion and determine which enzyme is more efficient. Cortical tissues were obtained from Sprague-Dawley (SD) rats. According to the different digestive enzymes, the samples were divided into the trypsin group and the papain group. After being digested by each of the two enzymes, cortical neurons were collected from the samples. Then, the morphology of the cortical neurons was determined. Moreover, the cortical neurons were transfected with the negative control (NC) lentivirus. The transfection efficiency and morphology were determined and compared. Compared with the papain group, cortical neurons in the trypsin group were more in number, had larger cell size, had longer axonal length, and had fewer impurities. The transfection efficiency of the trypsin group (57.77%) was higher than that of the papain group (53.83%). The morphology of neurons that was displayed showed that the cell body of most neurons shrank and became smaller, and the axis mutation became shorter and less in the papain group 6 days after transfection with the NC lentivirus. Trypsin is more efficient in digesting neurons because the neurons digested by this enzyme are more in number, have a larger cell body, longer axons, and greater transfection efficiency.

7.
Drug Des Devel Ther ; 10: 2061-8, 2016.
Article in English | MEDLINE | ID: mdl-27445457

ABSTRACT

Praziquantel (PZQ) is prescribed as a racemic mixture (racemic-PZQ, rac-PZQ), which is composed of (R)-PZQ and (S)-PZQ. In this work, the cytotoxicity of rac-PZQ and its two enantiomers (R)-PZQ and (S)-PZQ on eight cell lines (L-02, HepG2, prf-plc-5, SH-SY5Y, HUVEC, A549, HCT-15, Raw264.7) was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-nyltetrazolium bromide and lactate dehydrogenase assays. The morphology of apoptotic cells was studied by fluorescence microscope using Hoechst 33342 staining, and the cytotoxicity of the compounds was also tested by lactate dehydrogenase assay. Results revealed that (R)-PZQ had negligible cytotoxicity against L-02, SH-SY5Y, HUVEC, A549, HCT-15, and Raw264.7 cells but selectively inhibited tumor cell lines (prf-plc-5 and HepG2). However, in contrast to (R)-PZQ, the (S)-isomer showed higher cytotoxicity against L-02 cells and lower inhibition on prf-plc-5 and HepG2 cells. Besides, (R)-PZQ showed lower cytotoxicity on SH-SY5Y cells than (S)-PZQ. Meanwhile, (R)-PZQ at <80 µM concentration could promote proliferation of macrophage cells (Raw264.7). Our research revealed that (R)-PZQ has lower cytotoxicity than (S)-PZQ and has similar cytotoxicity with rac-PZQ. (S)-PZQ is the principal enantiomer to cause side effects on human definitive hosts. These findings gave the reasonable reasons for World Health Organization to produce (R)-PZQ as a replacement for rac-PZQ for the treatment of schistosomiasis.


Subject(s)
Hep G2 Cells/chemistry , L-Lactate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/metabolism , Praziquantel/pharmacology , Praziquantel/toxicity , Schistosomiasis/drug therapy , Tetrazolium Salts/chemistry , Thiazoles/chemistry , Cell Line, Tumor , Hep G2 Cells/drug effects , Hep G2 Cells/pathology , Humans , Praziquantel/chemistry , Stereoisomerism
8.
Molecules ; 20(3): 3854-67, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25738534

ABSTRACT

In order to identify novel chlorantraniliprole derivatives as potential insecticides or fungicides, 25 analogues of chlorantraniliprole were synthesized. The insecticidal activities against oriental armyworm and the antifungal activities against five typical fungi of these derivatives were tested. Compounds 2u, 2x and 2y exhibited good activities against oriental armyworm, especially compounds 2u and 2x which showed higher larvicidal activities than indoxacarb. Moreover, all of the tested compounds exhibited activities against five typical fungi. The Ki values of all synthesized compounds were calculated using AutoDock4. The relationship between the Ki values and the results of insecticidal activities against oriental armyworm further indicated that the membrane-spanning domain protein of the ryanodine receptor might contain chlorantraniliprole binding sites.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Ryanodine Receptor Calcium Release Channel/metabolism , ortho-Aminobenzoates/chemistry , ortho-Aminobenzoates/pharmacology , Animals , Binding Sites/drug effects , Fungi/drug effects , Fungi/metabolism , Larva/drug effects , Larva/metabolism , Lepidoptera/drug effects
9.
Bioorg Med Chem Lett ; 24(17): 4223-6, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25127102

ABSTRACT

A series of chiral praziquantel analogues were synthesized and evaluated against Schistosoma japonicum both in vitro and in vivo. All compounds exhibited low to considerable good activity in vivo. Remarkably, worm reduction rate of R-3 was 60.0% at a single oral dose of 200mg/kg against juvenile stage of Schistosoma japonicum. The target compounds displayed in vivo antischistosomal activity against both Schistosoma japonicum and Schistosoma mansoni. Furthermore, all R-isomers displayed stronger antischistosomal activity than S-isomers in vivo, indicating R-isomers were the active enantiomers, while S-isomers were less active ones. This structure activity relationship (SAR) could have important implications in further drug development for schistosomiasis.


Subject(s)
Praziquantel/analogs & derivatives , Praziquantel/pharmacology , Schistosoma japonicum/drug effects , Animals , Dose-Response Relationship, Drug , Molecular Structure , Praziquantel/chemical synthesis , Praziquantel/chemistry , Schistosoma japonicum/growth & development , Schistosoma mansoni/drug effects , Structure-Activity Relationship
10.
Biochem Pharmacol ; 90(2): 166-78, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24821110

ABSTRACT

Praziquantel (PZQ), prescribed as a racemic mixture, is the most readily available drug to treat schistosomiasis. In the present study, ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) based metabolomics was employed to decipher the metabolic pathways and enantioselective metabolic differences of PZQ. Many phase I and four new phase II metabolites were found in urine and feces samples of mice 24h after dosing, indicating that the major metabolic reactions encompassed oxidation, dehydrogenation, and glucuronidation. Differences in the formation of all these metabolites were observed between (R)-PZQ and (S)-PZQ. In an in vitro phase I incubation system, the major involvement of CYP3A, CYP2C9, and CYP2C19 in the metabolism of PZQ, and CYP3A, CYP2C9, and CYP2C19 exhibited different catalytic activity toward the PZQ enantiomers. Apparent Km and Vmax differences were observed in the catalytic formation of three mono-oxidized metabolites by CYP2C9 and CYP3A4 further supporting the metabolic differences for PZQ enantiomers. Molecular docking showed that chirality resulted in differences in substrate location and conformation, which likely accounts for the metabolic differences. In conclusion, in silico, in vitro, and in vivo methods revealed the enantioselective metabolic profile of praziquantel.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 Enzyme System/metabolism , Metabolome , Praziquantel/urine , Schistosomicides/urine , Administration, Oral , Animals , Aryl Hydrocarbon Hydroxylases/chemistry , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System/chemistry , Feces/chemistry , Isoenzymes/chemistry , Isoenzymes/metabolism , Kinetics , Male , Metabolic Detoxication, Phase I , Metabolic Detoxication, Phase II , Mice , Molecular Docking Simulation , Praziquantel/administration & dosage , Praziquantel/chemistry , Protein Conformation , Schistosomicides/administration & dosage , Schistosomicides/chemistry , Spectrometry, Mass, Electrospray Ionization , Stereoisomerism , Substrate Specificity
11.
Bioorg Med Chem Lett ; 24(8): 1987-92, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24666647

ABSTRACT

The lepidopteran pests such as diamondback moth are the regularly harmful pests of crops in the world, which brings enormous losses in crop production. Chlorantraniliprole is an anthranilic diamide insecticide registered for the control of lepidopteran pests with high insecticidal activity, however with uncertain binding site action target of chlorantraniliprole on ryanodine receptor, a series of new chlorantraniliprole derivatives were synthesized and the insecticidal activities of these compounds against diamondback moth were evaluated with chlorantraniliprole and indoxacarb as control. All compounds except 8h, 8p and 8t exhibited varying degree of activities against diamondback moth. Especially, compounds 8c, 8i, 8k and 8l displayed good insecticidal activities against diamondback moth and the activities are even better than that of indoxacarb during 72 h period. The Ki values of all synthesized compounds were calculated through autodocking program respectively. The relationship between calculation value of molecular docking and results of insecticidal activities indicated that the proposed specific receptor, the membrane-spanning domain protein of diamondback moth ryanodine receptor in our study might have chlorantraniliprole binding sites.


Subject(s)
Insecticides/chemical synthesis , Ryanodine Receptor Calcium Release Channel/chemistry , ortho-Aminobenzoates/chemistry , Animals , Binding Sites , Diamide/chemistry , Inhibitory Concentration 50 , Insecticides/chemistry , Insecticides/pharmacology , Models, Biological , Molecular Structure , Moths/drug effects , Protein Binding/drug effects , ortho-Aminobenzoates/chemical synthesis , ortho-Aminobenzoates/pharmacology
12.
Mol Endocrinol ; 24(1): 76-90, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19887647

ABSTRACT

Inherited mutations of the breast cancer susceptibility gene BRCA1 confer a high risk for breast cancer development. The (300)RXKK and (266)KXK motifs have been identified previously as sites for acetylation of the estrogen receptor-alpha (ER-alpha), and (302)K was also found to be a site for BRCA1-mediated mono-ubiquitination of ER-alpha in vitro. Here we show that ER-alpha proteins with single or double lysine mutations of these motifs (including K303R, a cancer-associated mutant) are resistant to inhibition by BRCA1, even though the mutant ER-alpha proteins retain the ability to bind to BRCA1. We also found that BRCA1 overexpression reduced and knockdown increased the level of acetylated wild-type ER-alpha, without changing the total ER-alpha protein level. Increased acetylation of ER-alpha due to BRCA1 small interfering RNA was dependent upon phosphatidylinositol 3-kinase/Akt signaling and on up-regulation of the coactivator p300. In addition, using an in vitro acetylation assay, we found that in vitro-translated wild-type BRCA1 but not a cancer-associated point mutant (C61G) inhibited p300-mediated acetylation of ER-alpha. Furthermore, BRCA1 overexpression increased the levels of mono-ubiquitinated ER-alpha protein, and a BRCA1 mutant that is defective for ubiquitin ligase activity but retains other BRCA1 functions (I26A) did not ubiquitinate ER-alpha or repress its activity in vivo. Finally, ER-alpha proteins with mutations of the (300)RXKK or (266)KXK motifs showed modest or no BRCA1-induced ubiquitination. We propose a model in which BRCA1 represses ER-alpha activity, in part, by regulating the relative degree of acetylation vs. ubiquitination of ER-alpha.


Subject(s)
BRCA1 Protein/physiology , Estrogen Receptor alpha/metabolism , Genes, BRCA1 , Protein Processing, Post-Translational , Acetylation , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast Neoplasms , Cell Line, Tumor , Estradiol/pharmacology , Female , Gene Knockdown Techniques , Genes, Reporter , Humans , Male , Mutation , Phosphoinositide-3 Kinase Inhibitors , Prostatic Neoplasms , Protein Binding , Proto-Oncogene Proteins c-akt/genetics , RNA, Small Interfering , Transfection , Ubiquitination , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism
13.
Mol Endocrinol ; 21(8): 1905-23, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17505062

ABSTRACT

The breast cancer susceptibility gene BRCA1 is mutated in about one half of all hereditary breast cancer cases, and its expression is frequently decreased in sporadic cancers. Previously, we demonstrated a functional interaction between the BRCA1 and estrogen receptor-alpha (ER-alpha) proteins that causes inhibition of ER-alpha signaling. Here, we examined the role of growth factor signaling pathways in modulating this interaction. We found that underexpression of BRCA1 caused ligand-independent activation of ER-alpha that was mediated through phosphatidylinositol-3 kinase (PI3K)/c-Akt signaling. BRCA1 underexpression also enhanced estrogen-inducible ER-alpha activity in a PI3K/Akt-dependent manner. Exogenous c-Akt conferred estrogen-independent ER-alpha activation and rescued the BRCA1 repression of estrogen-stimulated ER-alpha activity. BRCA1 knockdown stimulated c-Akt activity, in part, by inhibiting the activity of protein phosphatase 2A, an enzyme that dephosphorylates Akt. ERs with point mutations of several growth factor-targeted serine residues (S167A, S118A, and S118/167A) were resistant to repression by BRCA1, although the single point mutant receptors still associated with the BRCA1 protein. The enhanced ER-alpha activity attributable to BRCA1 knockdown was dependent, in part, on serine residues 167 and 118 of ER-alpha. BRCA1 knockdown caused an increase in ER-alpha phosphorylation on serine-167 (but not serine-118 or serine-104/106) that was dependent on PI3K/Akt signaling and was mimicked by pharmacologic inhibition of protein phosphatase 2A. These findings suggest that BRCA1 regulates Akt signaling and the PI3K/Akt pathway modulates the ability of BRCA1 to repress ER-alpha, in part through serine phosphorylation events in the activation function-1 domain of ER-alpha.


Subject(s)
BRCA1 Protein/physiology , Estrogen Receptor alpha/antagonists & inhibitors , Intercellular Signaling Peptides and Proteins/physiology , Signal Transduction/physiology , BRCA1 Protein/metabolism , Cell Line, Tumor , Estrogen Receptor alpha/metabolism , Female , Humans , Male , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
14.
Anticancer Drugs ; 17(7): 733-51, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16926624

ABSTRACT

Scatter factor (hepatocyte growth factor) and its receptor c-Met are increasingly expressed during progression from low-grade to high-grade gliomas. Scatter factor/c-Met signaling induces glioma cell motility, invasion, angiogenesis and resistance to DNA-damaging agents. The latter is relevant to the understanding of the resistance of human gliomas to chemotherapy and radiotherapy. The goal of this study was to identify a set of genes that may contribute to scatter factor-mediated protection of U373MG cells against cis-platinum, a DNA cross-linking agent. We used DNA microarray assays, confirmatory semiquantitative reverse transcription-polymerase chain reaction analysis and functional assays to identify genes involved in the scatter factor-induced resistance of U373MG to cis-platinum. We identified a group of genes that are overexpressed in cells treated with scatter factor plus cis-platinum relative to cells treated with cis-platinum alone and confirmed some of these gene expression alterations by reverse transcription-polymerase chain reaction. Inhibiting the expression of three of these genes--polycystic kidney disease 1, amplified in breast cancer 1 and DEAD/H box helicase 21--using small interfering RNAs reduced survival of cis-platinum-treated cells and partially reversed the scatter factor protection against cis-platinum. Dominant-negative Akt and IkappaB super-repressor expression vectors inhibited the scatter factor protection, and abrogated the ability of scatter factor to alter the expression of DEAD/H box helicase 21 and polycystin (PKD1) within the context of cis-platinum exposure. The Akt and nuclear factor-kappaB inhibitors had no effect on amplified in breast cancer 1 expression. These studies implicate DEAD/H box helicase 21, polycystin (PKD1) and amplified in breast cancer 1 as novel transcription-dependent regulators of scatter factor-mediated glioma cell protection against cytotoxic death, and identify other potential regulators for future study.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cisplatin/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Hepatocyte Growth Factor/physiology , Proto-Oncogene Proteins c-met/physiology , Blotting, Western , Cell Line, Tumor , DNA Fingerprinting , Down-Regulation/drug effects , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic/drug effects , Genetic Vectors , Humans , NF-kappa B/genetics , Oligonucleotide Array Sequence Analysis , Oncogene Protein v-akt/genetics , RNA, Neoplasm/isolation & purification , RNA, Small Interfering , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...