Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 38(9): 3807-3815, 2017 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-29965263

ABSTRACT

Coking wastewater is a typical industrial wastewater with high toxicity. Its treatment with biological processes is often challenging because it contains constituents inhibiting microbial activity. To study the inhibitory effect and possible acclimation of microbes in coking wastewater treatment, municipal sludge was inoculated into coking wastewater. Time-dependent concentrations of COD, phenol, ammonia nitrogen, and thiocyanide in coking wastewater were analyzed. The microbial community structure was investigated by the Illumina high-throughput sequencing technology during inoculation. The results showed that COD began to decrease after 16 h and 97.1% of phenol disappeared after 40 h. Thiocyanide began to degrade at 72 h and was undetectable after 96 h. Accordingly, the concentration of ammonia increased as the thiocyanide concentrations decreased. High-throughput pyrosequencing analysis showed that the microbial community structure and species richness varied at different culture stages. In the stage of phenol degradation, the abundance of Acinetobacter and Pseudomonas increased rapidly; the species richness was 13.04% of the community at 48 h. In the stage of thiocyanate degradation, Sphingobacterium,Brevundimonas,Lysobacter, and Chryseobacterium were the dominant bacteria and were 16.13% of the community at 96 h. At 144 h, Fluviicola,Stenotrophomonas, and Thiobacillus became the dominant species and were 22.45% of the community abundance. The results showed that municipal sludge can rapidly overcome the toxicity of coking wastewater because the pollutants are degraded rapidly. The microbial community structure changed as wastewater components were degraded. Environmental factors and the competition among bacteria played a key role in microbial community succession.


Subject(s)
Bacteria/classification , Bioreactors , Coke , Sewage/microbiology , Waste Disposal, Fluid , Wastewater , Phenol
2.
J Environ Sci (China) ; 19(12): 1424-9, 2007.
Article in English | MEDLINE | ID: mdl-18277644

ABSTRACT

Gasification of polyvinyl alcohol (PVA)-contaminated wastewater in supercritical water (SCW) was investigated in a continuous flow reactor at 723-873 K, 20-36 MPa and residence time of 20-60 s. The gas and liquid products were analyzed by GC/TCD, and TOC analyzer. The main gas products were H2, CH4, CO and CO2. Pressure change had no significant influence on gasification efficiency. Higher temperature and longer residence time enhanced gasification efficiency, and lower temperature favored the production of H2. The effects of KOH catalyst on gas product composition were studied, and gasification efficiency were analyzed. The TOC removal efficiency (R(TOC), carbon gasification ratio (R(CG)) and hydrogen gasification ratio (R(HG)) were up to 96.00%, 95.92% and 126.40% at 873 K and 60 s, respectively, which suggests PVA can be completely gasified in SCW. The results indicate supercritical water gasification for hydrogen generation is a promising process for the treatment of PVA wastewater.


Subject(s)
Conservation of Energy Resources/methods , Hydrogen/chemistry , Polyvinyl Alcohol/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Carbon Dioxide/chemistry , Carbon Monoxide/chemistry , Catalysis , Hydroxides/chemistry , Methane/chemistry , Potassium Compounds/chemistry , Pressure , Temperature , Water/chemistry
3.
J Environ Sci (China) ; 18(4): 644-9, 2006.
Article in English | MEDLINE | ID: mdl-17078539

ABSTRACT

The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650 degrees C and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650 degrees C and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CH4 and CO, among which the total molar percentage of H2 and CH4 was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.


Subject(s)
Cresols/chemistry , Oxidants/chemistry , Waste Disposal, Fluid/methods , Water/chemistry , Bioelectric Energy Sources , Carbon Dioxide/analysis , Carbon Dioxide/chemistry , Catalysis , Hydrogen/analysis , Hydrogen/chemistry , Oxidation-Reduction , Oxygen/analysis , Oxygen/chemistry , Pressure , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...