Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Med ; 16(7-8): 322-32, 2010.
Article in English | MEDLINE | ID: mdl-20386871

ABSTRACT

ST-segment elevation is the major clinical criterion for committing patients with chest pain to have emergent coronary revascularizations; however, the mechanism responsible for ST-segment elevation is unknown. In a guinea pig model of ST-segment elevation acute myocardial infarction (AMI), local application of hirudin, a thrombin antagonist, significantly decreased AMI-induced ST-segment elevation in a dose-dependent manner. Hirudin-induced (5 antithrombin units [ATU]) decrease in ST elevation was reversed by 250 nmol/L thrombin receptor activator peptide (TRAP). TRAP (250 nmol/L [100 microL]) significantly induced ST-segment elevation in hearts without AMI. The TRAP effect was blocked by 4 mg/kg glibenclamide and 4 mg/kg HMR1098 and partially blocked by 3 mg/kg 5HD. Pinacidil (0.45 mg/kg) simulated the effect of TRAP (250 nmol/L [100 microL]) on hearts without AMI. Moreover, single-channel recordings showed that TRAP induced ATP-sensitive K+ channel (KATP channel) activity, and this effect was blocked by HMR1098 but not 5HD. Finally, TRAP significantly shortened the monophasic action potential (MAP) at 90% repolarization (MAP90) and epicardial MAP (EpiMAP) duration. These effects of TRAP were completely reversed by HMR1098 and partially reversed by 5HD. Thrombin and its receptor activation enhanced ST-segment elevation in an AMI model by activating the sarcolemmal KATP channel.


Subject(s)
Electrocardiography/drug effects , KATP Channels/metabolism , Myocardial Infarction/metabolism , Receptors, Thrombin/metabolism , Thrombin/metabolism , Analysis of Variance , Animals , Electrocardiography/methods , Guinea Pigs , Hirudins/pharmacology , Male , Perfusion , Thrombin/antagonists & inhibitors
2.
Am J Physiol Heart Circ Physiol ; 290(1): H248-54, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16113071

ABSTRACT

Enhanced external counterpulsation (EECP) is an effective noninvasive treatment of coronary artery disease. Its mechanism of action remains unknown. An acute coronary occlusion dog model was created to explore the angiogenic effect of EECP. After coronary occlusion, 12 dogs were randomly assigned to either EECP (n = 6) or control (n = 6). Immunohistochemical studies of alpha-actin and von Willebrand factor (vWF) were used to detect newly developed microvessels. Systemic and local vascular endothelial growth factor (VEGF) were identified by ELISA and reverse transcriptase PCR analysis. There was a significant increase in the density of microvessels per squared millimeter in the infarcted regions of the EECP group compared with the control group (vWF, 15.2 +/- 6.3 vs. 4.9 +/- 2.1, P < 0.05; alpha-actin, 11.8 +/- 5.3 vs. 3.4 +/- 1.2, P < 0.05). The positive-stained area per squared micrometer also increased significantly (alpha-actin, 6.6 x 10(3) +/- 2.9 x 10(3) microm2 vs. 0.6 x 10(3) +/- 0.5 x 10(3) microm2, P < 0.05; vWF, 5.7 x 10(3) +/- 1.9 x 10(3) microm2 vs. 1.7 x 10(3) +/- 1.4 x 10(3) microm2, P < 0.05). Immunohistochemical staining and reverse transcriptase PCR analysis documented a significant increase in VEGF expression. These factors associated with angiogenesis corresponded to improved myocardial perfusion by 99mTc-sestamibi single-photon emission computed tomography. Angiogenesis may be a mechanism of action for the improved myocardial perfusion demonstrated after EECP therapy.


Subject(s)
Counterpulsation , Myocardial Infarction/therapy , Neovascularization, Physiologic , Animals , Coronary Vessels/pathology , Disease Models, Animal , Dogs , Gene Expression , Hemodynamics , Ligation , Male , Myocardium/metabolism , Vascular Endothelial Growth Factor A/biosynthesis
3.
Chin Med J (Engl) ; 118(14): 1182-9, 2005 Jul 20.
Article in English | MEDLINE | ID: mdl-16117863

ABSTRACT

BACKGROUND: Enhanced external counterpulsation (EECP) has been demonstrated to be effective in the treatment of patients with coronary artery disease (CAD). It has been proposed that the beneficial effects of EECP observed in clinical studies may be due to the formation of new blood vessels (angiogenesis) and collateral development. However, there is a relative paucity of basic studies to support the proposed mechanisms. METHODS: Twelve Beagle dogs were anesthetized with 3% sodium pentobarbital, 1 mg/kg intraperitoneal injection and mechanically ventilated for the development of myocardial infarction. After coronary occlusion, all animals were randomly assigned to either EECP or control. EECP was given one hour per day, 5 days a week, for a total of 28 to 30 hours treatment over a 6-week course. Immunohistochemical studies of alpha-actin and von Willebrand factor (vWF) were used to detect newly developed microvessels. Systemic and local vascular endothelial growth factor (VEGF) were identified by enzyme linked immunosorbent assay (ELISA) and reverse-transcriptional polymerase chain reaction (RT-PCR) analysis. RESULTS: There was a significant increase in the density of microvessels per mm(2) in the infarcted regions of EECP group compared to control group (vWF, 15.2 +/- 6.3 versus 4.9 +/- 2.1, P < 0.05; alpha-actin, 11.8 +/- 5.3 versus 3.4 +/- 1.2, P < 0.05), along with significant increase of positive vWF and alpha-actin stained area. Both immunohistochemical staining and RT-PCR analysis documented a significant increase in VEGF expression. These factors associated with angiogenesis corresponded to improved myocardial perfusion by 99mTc-sestamibi single-photon emission computed tomography. CONCLUSION: Microvessel angiogenesis may be a mechanism of action for the improved myocardial perfusion after EECP therapy.


Subject(s)
Counterpulsation , Myocardial Infarction/therapy , Neovascularization, Physiologic , Animals , Dogs , Hemodynamics , Immunohistochemistry , Male , Microcirculation , Myocardial Infarction/physiopathology , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor A/genetics , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...