Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
J Immunol ; 213(3): 384-393, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38864663

ABSTRACT

Allogeneic hematopoietic cell transplantation is an effective treatment for hematologic malignancies, but the complications such as graft-versus-host disease (GVHD) can limit its benefit. The conditioning regimens before transplant, including chemotherapy or irradiation, can trigger endoplasmic reticulum stress. IRE-1α is a major endoplasmic reticulum stress mediator that can further activate both spliced XBP-1 (XBP-1s) and regulated IRE-1-dependent decay (RIDD). IRE-1α-XBP-1s signaling controls dendritic cell (DC) differentiation and Ag presentation, crucial in GVHD progression. In this study, we used DC-specific XBP-1-deficient mice as donors or recipients and observed that XBP-1s was crucial for host DCs in the induction of GVHD but dispensable for the graft-versus-leukemia response. To specifically target IRE-1α in the host, we treated recipient mice with the IRE-1α inhibitor B-I09 for 3 d prior to bone marrow transplantation, which significantly suppressed GVHD development while maintaining the graft-versus-leukemia effect. XBP-1-deficient or BI09-treated recipients showed reduced DC survival after irradiation and bone marrow transplantation. Inhibition of IRE-1α also led to a reduction in DC alloreactivity, subsequently decreasing the proliferation and activation of allogeneic T cells. With further study using RIDD-deficient DCs, we observed that RIDD was also required for optimal DC activation. Taken together, XBP-1s and RIDD both promote host DC survival and alloreactivity that contribute to GVHD development.


Subject(s)
Dendritic Cells , Endoplasmic Reticulum Stress , Endoribonucleases , Graft vs Host Disease , Protein Serine-Threonine Kinases , X-Box Binding Protein 1 , Animals , Dendritic Cells/immunology , Graft vs Host Disease/immunology , Mice , Endoplasmic Reticulum Stress/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/genetics , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , Mice, Knockout , Mice, Inbred C57BL , Hematopoietic Stem Cell Transplantation , Bone Marrow Transplantation , Signal Transduction , Cell Differentiation/immunology , Graft vs Leukemia Effect/immunology
2.
Ann Hematol ; 102(10): 2753-2763, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37422592

ABSTRACT

Burkitt lymphoma (BL) is an extremely aggressive but curable subtype of non-Hodgkin lymphoma. While younger patients have excellent outcomes in response to aggressive chemoimmunotherapy, the rarity of this disease in older patients and limitations caused by age, comorbidities, and performance status may negate survival advantages. This analysis assessed outcomes of older adults with BL through data provided by the Texas Cancer Registry (TCR). Patients ≥65 years with BL were assessed. Patients were dichotomized into 1997-2007 and 2008-2018. Median overall survival (OS) and disease-specific survival (DSS) were assessed using Kaplan-Meier methodology, and covariates including age, race, sex, stage, primary site, and poverty index were analyzed using Pearson Chi-squared analysis. Odds ratio (OR) with 95% confidence intervals (CI) was used to assess factors contributing to patients not offered systemic therapy. P value <0.05 was considered statistically significant. Non-BL mortality events were also categorized. There were 325 adults, 167 in 1997-2007 and 158 in 2008-2018; 106 (63.5%) and 121 (76.6%) received systemic therapy, a trend that increased with time (p = 0.010). Median OS for 1997-2007 and 2008-2018 was 5 months (95% CI 2.469, 7.531) and 9 months (95% CI 0.000, 19.154) (p = 0.013), and DSS was 72 months (95% CI 56.397, 87.603) (p = 0.604) and not reached, respectively. For patients that received systemic therapy, median OS was 8 months (95% CI 1.278, 14.722) and 26 months (95% CI 5.824, 46.176) (p = 0.072), respectively, and DSS was 79 months (95% CI: 56.416, 101.584) and not reached, respectively (p = 0.607). Age ≥75 years (HR 1.39 [95% CI 1.078, 1.791], p = 0.011) and non-Hispanic whites (HR 1.407 [95% CI 1.024, 1.935], p = 0.035) had poorer outcomes, and patients at the 20-100% poverty index (OR 0.387 [95% CI 0.163, 0.921], p = 0.032) and increasing age at diagnosis (OR 0.947 [95% CI 0.913, 0.983], p = 0.004) were less likely to receive systemic therapy. Of 259 (79.7%) deaths, 62 (23.9%) were non-BL deaths, and 6 (9.6%) of these were from a second cancer. This two-decade analysis of older Texas patients with BL indicates a significant improvement in OS over time. Although patients were more likely to receive systemic therapy over time, treatment disparities existed in patients residing in poverty-stricken regions of Texas and in advancing age. These statewide findings reflect an unmet national need to find a systemic therapeutic strategy that can be tolerated by and augment outcomes in the growing elderly population.


Subject(s)
Burkitt Lymphoma , Humans , Aged , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/epidemiology , Texas/epidemiology , Registries
3.
Nat Cell Biol ; 25(5): 726-739, 2023 05.
Article in English | MEDLINE | ID: mdl-37142791

ABSTRACT

Stimulator of interferon genes (STING) orchestrates the production of proinflammatory cytokines in response to cytosolic double-stranded DNA; however, the pathophysiological significance and molecular mechanism underlying the folding and maturation of nascent STING protein at the endoplasmic reticulum (ER) remain unknown. Here we report that the SEL1L-HRD1 protein complex-the most conserved branch of ER-associated degradation (ERAD)-is a negative regulator of the STING innate immunity by ubiquitinating and targeting nascent STING protein for proteasomal degradation in the basal state. SEL1L or HRD1 deficiency in macrophages specifically amplifies STING signalling and immunity against viral infection and tumour growth. Mechanistically, nascent STING protein is a bona fide substrate of SEL1L-HRD1 in the basal state, uncoupled from ER stress or its sensor inositol-requiring enzyme 1α. Hence, our study not only establishes a key role of SEL1L-HRD1 ERAD in innate immunity by limiting the size of the activable STING pool, but identifies a regulatory mechanism and therapeutic approach to targeting STING.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Endoplasmic Reticulum/metabolism , Immunity, Innate
4.
Ann Hematol ; 102(5): 1111-1120, 2023 May.
Article in English | MEDLINE | ID: mdl-36922432

ABSTRACT

Primary central nervous system lymphoma (PCNSL) is an aggressive subtype of non-Hodgkin lymphoma that carries a poor prognosis in the elderly. The aim of this study is to investigate treatment patterns and survival trends in patients ≥ 65 years with PCNSL through data provided by the Texas Cancer Registry. Adults ≥ 65 years diagnosed with PCNSL and followed between 1995-2017 were identified and separated into three eras: 1995-2003, 2004-2012, and 2013-2017. Baseline covariates compared included patient demographics and treatments administered. Pearson's chi-squared test and Cox proportional hazard models compared covariates; overall survival (OS) and disease-specific survival (DSS) were assessed via Kaplan-Meier methodology. There were 375 patients; 104 (27.7%) in 1995-2003, 146 (38.9%) in 2004-2012, and 125 (33.3%) in 2013-2017. There were 50 (48.1%), 55 (37.7%), and 31 (24.8%) in 1995-2003, 2004-2012, and 2013-2017, respectively, that did not receive treatment. At last follow up, 101 (97.1%), 130 (89.0%), and 94 (75.2%) in each era died, of which 89 (85.6%), 112 (76.7%), and 70 (56.0%) were attributed to PCNSL. Median OS per era was eight (95% confidence interval [CI] 5.06-10.93), six (95% CI, 2.30-9.69), and five months (95% CI, 2.26-7.73) (p = 0.638). DSS per era was nine (95% CI: 0.00, 26.53), 10 (95% CI: 5.14, 14.86), and 19 (95% CI, 0.00-45.49) (p = 0.931) months. Spinal cord as primary disease site (HR: 0.668 [95% CI, 0.45-0.99], p = 0.049), and chemotherapy (HR 0.532 [95% CI, 0.42-0.673], p = < 0.001) or chemotherapy + radiation (HR, 0.233 [95% CI, 0.11-0.48] p < 0.001) had better outcomes compared to no therapy or radiation therapy alone. Survival in older patients ≥ 65 with PCNSL has not improved per our analysis of the TCR from 1995-2017 despite increasing trends of treatment utilization. Strategies to augment recruitment of older individuals in trials are needed in order to determine who would derive treatment benefit and minimize treatment toxicities.


Subject(s)
Central Nervous System Neoplasms , Lymphoma, Non-Hodgkin , Adult , Humans , Aged , Texas/epidemiology , Central Nervous System Neoplasms/therapy , Central Nervous System Neoplasms/drug therapy , Lymphoma, Non-Hodgkin/epidemiology , Lymphoma, Non-Hodgkin/therapy , Registries , Central Nervous System
5.
Rheumatology (Oxford) ; 62(10): 3268-3279, 2023 10 03.
Article in English | MEDLINE | ID: mdl-36727470

ABSTRACT

OBJECTIVE: To evaluate the long-term safety and efficacy of sarilumab with/without conventional synthetic (cs)DMARDs in RA. METHODS: The analyses evaluated two open-label extensions (OLEs): EXTEND and MONARCH OLE, which included patients from six randomized trials. Patients received sarilumab 200 mg once every 2 weeks (q2w) for at least 264 weeks up to 516 weeks (EXTEND: Sarilumab Monotherapy and Sarilumab + csDMARD groups) or for 276 weeks (MONARCH OLE: Continuation and Switch groups). Primary endpoints included safety, immunogenicity and changes in laboratory parameters. Secondary endpoints included clinical signs and symptoms along with health-related quality-of-life (HRQOL) questionnaires. RESULTS: The Sarilumab Monotherapy (n = 111), Continuation (n = 165) and Switch (n = 155) groups received sarilumab monotherapy, while the Sarilumab + csDMARD group (n = 1910) received sarilumab in combination with csDMARDs. Incidence of one or more treatment-emergent adverse events was 126 (Sarilumab Monotherapy group), 169 (Sarilumab + csDMARD group), 159 (Continuation group) and 159 (Switch group) events/100 patient-years. Neutropenia was the most common adverse event. Neutropenia was not associated with an increased incidence of infections. Most neutropenia cases normalized on-treatment. Adverse events of special interests, such as malignancies, major adverse cardiovascular events, venous thromboembolism and gastrointestinal perforations, were rare. Immunogenicity was low and not associated with hypersensitivity reactions or discontinuations due to lack or loss of efficacy. Improvements in clinical signs and symptoms and HRQOL, observed during the initial blinded trials, were maintained throughout the OLE assessment period. CONCLUSIONS: Long-term sarilumab treatment with/without csDMARDs in patients with RA revealed no new safety findings. Efficacy and HRQOL were maintained or further increased over the open-label assessment period. TRIAL REGISTRATION: EXTEND, ClinicalTrials.gov, https://www.clinicaltrials.gov/ct2/show/NCT01146652, NCT01146652; MONARCH OLE, ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02332590, NCT02332590.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Neutropenia , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/chemically induced , Antibodies, Monoclonal, Humanized/adverse effects , Antirheumatic Agents/adverse effects , Neutropenia/epidemiology , Treatment Outcome , Methotrexate/therapeutic use
6.
Mol Carcinog ; 61(10): 958-971, 2022 10.
Article in English | MEDLINE | ID: mdl-35975910

ABSTRACT

Transforming Growth Factor ß1 (TGFß1) is a critical regulator of tumor progression in response to HRas. Recently, TGFß1 has been shown to trigger ER stress in many disease models; however, its role in oncogene-induced ER stress is unclear. Oncogenic HRas induces the unfolded protein response (UPR) predominantly via the Inositol-requiring enzyme 1α (IRE1α) pathway to initiate the adaptative responses to ER stress, with importance for both proliferation and senescence. Here, we show a role of the UPR sensor proteins IRE1α and (PKR)-like endoplasmic reticulum kinase (PERK) to mediate the tumor-suppressive roles of TGFß1 in mouse keratinocytes expressing mutant forms of HRas. TGFß1 suppressed IRE1α phosphorylation and activation by HRas both in in vitro and in vivo models while simultaneously activating the PERK pathway. However, the increase in ER stress indicated an uncoupling of ER stress and IRE1α activation by TGFß1. Pharmacological and genetic approaches demonstrated that TGFß1-dependent dephosphorylation of IRE1α was mediated by PERK through RNA Polymerase II Associated Protein 2 (RPAP2), a PERK-dependent IRE1α phosphatase. In addition, TGFß1-mediated growth arrest in oncogenic HRas keratinocytes was partially dependent on PERK-induced IRE1α dephosphorylation and inactivation. Together, these results demonstrate a critical cross-talk between UPR proteins that is important for TGFß1-mediated tumor suppressive responses.


Subject(s)
Endoribonucleases , RNA Polymerase II , Animals , Endoplasmic Reticulum Stress/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Inositol , Keratinocytes/metabolism , Mice , Protein Serine-Threonine Kinases/genetics , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Unfolded Protein Response , eIF-2 Kinase/metabolism
8.
Leukemia ; 36(10): 2430-2442, 2022 10.
Article in English | MEDLINE | ID: mdl-36042317

ABSTRACT

Activation-induced cytidine deaminase (AID) has been implicated as both a positive and a negative factor in the progression of B cell chronic lymphocytic leukemia (CLL), but the role that it plays in the development and progression of this disease is still unclear. We generated an AID knockout CLL mouse model, AID-/-/Eµ-TCL1, and found that these mice die significantly earlier than their AID-proficient counterparts. AID-deficient CLL cells exhibit a higher ER stress response compared to Eµ-TCL1 controls, particularly through activation of the IRE1/XBP1s pathway. The increased production of secretory IgM in AID-deficient CLL cells contributes to their elevated expression levels of XBP1s, while secretory IgM-deficient CLL cells express less XBP1s. This increase in XBP1s in turn leads AID-deficient CLL cells to exhibit higher levels of B cell receptor signaling, supporting leukemic growth and survival. Further, AID-/-/Eµ-TCL1 CLL cells downregulate the tumor suppressive SMAD1/S1PR2 pathway and have altered homing to non-lymphoid organs. Notably, CLL cells from patients with IgHV-unmutated disease express higher levels of XBP1s mRNA compared to those from patients with IgHV-mutated CLL. Our studies thus reveal novel mechanisms by which the loss of AID leads to worsened CLL and may explain why unmutated CLL is more aggressive than mutated CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Cytidine Deaminase/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice , Mice, Knockout , Protein Serine-Threonine Kinases , RNA, Messenger/genetics , Receptors, Antigen, B-Cell/genetics
9.
Mol Pharm ; 19(4): 1059-1067, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35253431

ABSTRACT

Activation of the IRE-1/XBP-1s pathway supports tumor progression. Here, we report a novel prodrug, TC-D-F07, in which a thiol-reactive dinitrobenzenesulfonyl (Dns) cage was installed onto the C8 hydroxyl of the covalent IRE-1 inhibitor D-F07. The electron-withdrawing Dns group in TC-D-F07 stabilizes the neighboring 1,3-dioxane acetal, allowing for stimulus-mediated control of its inhibitory activity. TC-D-F07 exhibits high sensitivity to intracellular thiols. Because tumor cells exhibit higher concentrations of glutathione and cysteine, treatment with TC-D-F07 results in more sustained levels of D-F07 in transformed versus normal cells. In addition, we show that a dinitrophenyl cysteine adduct resulting from cleavage of the Dns group induces endoplasmic reticulum (ER) stress, causing tumor cells to increase the expression of XBP-1s. The accumulated levels of D-F07 and its gradual decomposition into the active IRE-1 inhibitor eventually deprive tumor cells of XBP-1s, leading to more severe apoptosis than those treated with its uncaged analogue.


Subject(s)
Neoplasms , Prodrugs , Apoptosis , Endoplasmic Reticulum Stress , Humans , Neoplasms/drug therapy , Prodrugs/pharmacology
10.
Front Immunol ; 12: 705484, 2021.
Article in English | MEDLINE | ID: mdl-34659198

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective therapeutic procedure to treat hematological malignancies. However, the benefit of allo-HCT is limited by a major complication, chronic graft-versus-host disease (cGVHD). Since transmembrane and secretory proteins are generated and modified in the endoplasmic reticulum (ER), the ER stress response is of great importance to secretory cells including B cells. By using conditional knock-out (KO) of XBP-1, IRE-1α or both specifically on B cells, we demonstrated that the IRE-1α/XBP-1 pathway, one of the major ER stress response mediators, plays a critical role in B cell pathogenicity on the induction of cGVHD in murine models of allo-HCT. Endoribonuclease activity of IRE-1α activates XBP-1 signaling by converting unspliced XBP-1 (XBP-1u) mRNA into spliced XBP-1 (XBP-1s) mRNA but also cleaves other ER-associated mRNAs through regulated IRE-1α-dependent decay (RIDD). Further, ablation of XBP-1s production leads to unleashed activation of RIDD. Therefore, we hypothesized that RIDD plays an important role in B cells during cGVHD development. In this study, we found that the reduced pathogenicity of XBP-1 deficient B cells in cGVHD was reversed by RIDD restriction in IRE-1α kinase domain KO mice. Restraining RIDD activity per se in B cells resulted in an increased severity of cGVHD. Besides, inhibition of RIDD activity compromised B cell differentiation and led to dysregulated expression of MHC II and costimulatory molecules such as CD86, CD40, and ICOSL in B cells. Furthermore, restraining the RIDD activity without affecting XBP-1 splicing increased B cell ability to induce cGVHD after allo-HCT. These results suggest that RIDD is an important mediator for reducing cGVHD pathogenesis through targeting XBP-1s.


Subject(s)
B-Lymphocytes/immunology , Endoribonucleases/immunology , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation , Protein Serine-Threonine Kinases/immunology , Proteolysis , X-Box Binding Protein 1/immunology , Allografts , Animals , Chronic Disease , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/immunology , Endoribonucleases/genetics , Graft vs Host Disease/genetics , Mice , Mice, Inbred BALB C , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Signal Transduction , X-Box Binding Protein 1/genetics
11.
N Engl J Med ; 385(18): 1656-1668, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34706171

ABSTRACT

BACKGROUND: Monoclonal antibodies targeting IgE, interleukin-4 and -13, and interleukin-5 are effective in treating severe type 2 asthma, but new targets are needed. Itepekimab is a new monoclonal antibody against the upstream alarmin interleukin-33. The efficacy and safety of itepekimab as monotherapy, as well as in combination with dupilumab, in patients with asthma are unclear. METHODS: In a phase 2 trial, we randomly assigned, in a 1:1:1:1 ratio, adults with moderate-to-severe asthma receiving inhaled glucocorticoids plus long-acting beta-agonists (LABAs) to receive subcutaneous itepekimab (at a dose of 300 mg), itepekimab plus dupilumab (both at 300 mg; combination therapy), dupilumab (300 mg), or placebo every 2 weeks for 12 weeks. After randomization, LABA was discontinued at week 4, and inhaled glucocorticoids were tapered over weeks 6 through 9. The primary end point was an event indicating a loss of asthma control, assessed in the itepekimab group and the combination group, as compared with the placebo group. Secondary and other end points included lung function, asthma control, quality of life, type 2 biomarkers, and safety. RESULTS: A total of 296 patients underwent randomization. By 12 weeks, an event indicating a loss of asthma control occurred in 22% of the patients in the itepekimab group, 27% of those in the combination group, and 19% of those in the dupilumab group, as compared with 41% of those in the placebo group; the corresponding odds ratios as compared with placebo were as follows: in the itepekimab group, 0.42 (95% confidence interval [CI], 0.20 to 0.88; P = 0.02); in the combination group, 0.52 (95% CI, 0.26 to 1.06; P = 0.07); and in the dupilumab group, 0.33 (95% CI, 0.15 to 0.70). As compared with placebo, the forced expiratory volume in 1 second before bronchodilator use increased with the itepekimab and dupilumab monotherapies but not with the combination therapy. Itepekimab treatment improved asthma control and quality of life, as compared with placebo, and led to a greater reduction in the mean blood eosinophil count. The incidence of adverse events was similar in all four trial groups. CONCLUSIONS: Interleukin-33 blockade with itepekimab led to a lower incidence of events indicating a loss of asthma control than placebo and improved lung function in patients with moderate-to-severe asthma. (Funded by Sanofi and Regeneron Pharmaceuticals; ClinicalTrials.gov number, NCT03387852.).


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Interleukin-33/antagonists & inhibitors , Adult , Aged , Anti-Asthmatic Agents/adverse effects , Asthma/drug therapy , Double-Blind Method , Drug Therapy, Combination , Female , Glucocorticoids/therapeutic use , Humans , Injections, Subcutaneous , Male , Middle Aged , Quality of Life , Receptors, Interleukin-4/antagonists & inhibitors , Treatment Failure
12.
Cancer Res ; 81(20): 5325-5335, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34548333

ABSTRACT

The SWI/SNF chromatin-remodeling complex is frequently altered in human cancers. For example, the SWI/SNF component ARID1A is mutated in more than 50% of ovarian clear cell carcinomas (OCCC), for which effective treatments are lacking. Here, we report that ARID1A transcriptionally represses the IRE1α-XBP1 axis of the endoplasmic reticulum (ER) stress response, which confers sensitivity to inhibition of the IRE1α-XBP1 pathway in ARID1A-mutant OCCC. ARID1A mutational status correlated with response to inhibition of the IRE1α-XBP1 pathway. In a conditional Arid1aflox/flox/Pik3caH1047R genetic mouse model, Xbp1 knockout significantly improved survival of mice bearing OCCCs. Furthermore, the IRE1α inhibitor B-I09 suppressed the growth of ARID1A-inactivated OCCCs in vivo in orthotopic xenograft, patient-derived xenograft, and the genetic mouse models. Finally, B-I09 synergized with inhibition of HDAC6, a known regulator of the ER stress response, in suppressing the growth of ARID1A-inactivated OCCCs. These studies define the IRE1α-XBP1 axis of the ER stress response as a targetable vulnerability for ARID1A-mutant OCCCs, revealing a promising therapeutic approach for treating ARID1A-mutant ovarian cancers. SIGNIFICANCE: These findings indicate that pharmacological inhibition of the IRE1α-XBP1 pathway alone or in combination with HDAC6 inhibition represents an urgently needed therapeutic strategy for ARID1A-mutant ovarian cancers.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , DNA-Binding Proteins/genetics , Endoplasmic Reticulum Stress , Endoribonucleases/antagonists & inhibitors , Mutation , Ovarian Neoplasms/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Transcription Factors/genetics , X-Box Binding Protein 1/antagonists & inhibitors , Adenocarcinoma, Clear Cell/drug therapy , Adenocarcinoma, Clear Cell/genetics , Adenocarcinoma, Clear Cell/metabolism , Adenocarcinoma, Clear Cell/pathology , Animals , Apoptosis , Cell Proliferation , DNA-Binding Proteins/physiology , Endoribonucleases/genetics , Endoribonucleases/metabolism , Endoribonucleases/physiology , Female , Gene Expression Regulation, Neoplastic , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , Mice, Knockout , Mice, Nude , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , Transcription Factors/physiology , Tumor Cells, Cultured , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/physiology , Xenograft Model Antitumor Assays
13.
Nat Commun ; 12(1): 5321, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34493732

ABSTRACT

CARM1 is often overexpressed in human cancers including in ovarian cancer. However, therapeutic approaches based on CARM1 expression remain to be an unmet need. Cancer cells exploit adaptive responses such as the endoplasmic reticulum (ER) stress response for their survival through activating pathways such as the IRE1α/XBP1s pathway. Here, we report that CARM1-expressing ovarian cancer cells are selectively sensitive to inhibition of the IRE1α/XBP1s pathway. CARM1 regulates XBP1s target gene expression and directly interacts with XBP1s during ER stress response. Inhibition of the IRE1α/XBP1s pathway was effective against ovarian cancer in a CARM1-dependent manner both in vitro and in vivo in orthotopic and patient-derived xenograft models. In addition, IRE1α inhibitor B-I09 synergizes with immune checkpoint blockade anti-PD1 antibody in an immunocompetent CARM1-expressing ovarian cancer model. Our data show that pharmacological inhibition of the IRE1α/XBP1s pathway alone or in combination with immune checkpoint blockade represents a therapeutic strategy for CARM1-expressing cancers.


Subject(s)
Carcinoma, Ovarian Epithelial/therapy , Endoribonucleases/genetics , Ovarian Neoplasms/therapy , Programmed Cell Death 1 Receptor/genetics , Protein Serine-Threonine Kinases/genetics , Protein-Arginine N-Methyltransferases/genetics , X-Box Binding Protein 1/genetics , Animals , Antibodies, Monoclonal/pharmacology , Base Sequence , Benzopyrans/pharmacology , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/antagonists & inhibitors , Endoribonucleases/immunology , Female , Gene Expression Regulation, Neoplastic , Humans , Hymecromone/analogs & derivatives , Hymecromone/pharmacology , Immune Checkpoint Inhibitors , Mice , Molecular Targeted Therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Protein Binding , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/immunology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/immunology , Signal Transduction , X-Box Binding Protein 1/antagonists & inhibitors , X-Box Binding Protein 1/immunology , Xenograft Model Antitumor Assays
14.
J Biol Chem ; 297(3): 100991, 2021 09.
Article in English | MEDLINE | ID: mdl-34419450

ABSTRACT

Fic domain-containing AMP transferases (fic AMPylases) are conserved enzymes that catalyze the covalent transfer of AMP to proteins. This posttranslational modification regulates the function of several proteins, including the ER-resident chaperone Grp78/BiP. Here we introduce a mouse FICD (mFICD) AMPylase knockout mouse model to study fic AMPylase function in vertebrates. We find that mFICD deficiency is well tolerated in unstressed mice. We also show that mFICD-deficient mouse embryonic fibroblasts are depleted of AMPylated proteins. mFICD deletion alters protein synthesis and secretion in splenocytes, including that of IgM, an antibody secreted early during infections, and the proinflammatory cytokine IL-1ß, without affecting the unfolded protein response. Finally, we demonstrate that visual nonspatial short-term learning is stronger in old mFICD-/- mice than in wild-type controls while other measures of cognition, memory, and learning are unaffected. Together, our results suggest a role for mFICD in adaptive immunity and neuronal plasticity in vivo.


Subject(s)
Cytokines/metabolism , Learning , Transferases/metabolism , Visual Perception , Animals , Cells, Cultured , Endoplasmic Reticulum Chaperone BiP , Mice , Mice, Knockout
15.
Q J R Meteorol Soc ; 147(737): 2352-2374, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34262229

ABSTRACT

A novel particle filter proposed recently, the particle flow filter (PFF), avoids the long-existing weight degeneracy problem in particle filters and, therefore, has great potential to be applied in high-dimensional systems. The PFF adopts the idea of a particle flow, which sequentially pushes the particles from the prior to the posterior distribution, without changing the weight of each particle. The essence of the PFF is that it assumes the particle flow is embedded in a reproducing kernel Hilbert space, so that a practical solution for the particle flow is obtained. The particle flow is independent of the choice of kernel in the limit of an infinite number of particles. Given a finite number of particles, we have found that a scalar kernel fails in high-dimensional and sparsely observed settings. A new matrix-valued kernel is proposed that prevents the collapse of the marginal distribution of observed variables in a high-dimensional system. The performance of the PFF is tested and compared with a well-tuned local ensemble transform Kalman filter (LETKF) using the 1,000-dimensional Lorenz 96 model. It is shown that the PFF is comparable to the LETKF for linear observations, except that explicit covariance inflation is not necessary for the PFF. For nonlinear observations, the PFF outperforms LETKF and is able to capture the multimodal likelihood behavior, demonstrating that the PFF is a viable path to fully nonlinear geophysical data assimilation.

16.
J Clin Invest ; 131(16)2021 08 16.
Article in English | MEDLINE | ID: mdl-34228641

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are major negative regulators of immune responses in cancer and chronic infections. It remains unclear if regulation of MDSC activity in different conditions is controlled by similar mechanisms. We compared MDSCs in mice with cancer and lymphocytic choriomeningitis virus (LCMV) infection. Chronic LCMV infection caused the development of monocytic MDSCs (M-MDSCs) but did not induce polymorphonuclear MDSCs (PMN-MDSCs). In contrast, both MDSC populations were present in cancer models. An acquisition of immune-suppressive activity by PMN-MDSCs in cancer was controlled by IRE1α and ATF6 pathways of the endoplasmic reticulum (ER) stress response. Abrogation of PMN-MDSC activity by blockade of the ER stress response resulted in an increase in tumor-specific immune response and reduced tumor progression. In contrast, the ER stress response was dispensable for suppressive activity of M-MDSCs in cancer and LCMV infection. Acquisition of immune-suppressive activity by M-MDSCs in spleens was mediated by IFN-γ signaling. However, it was dispensable for suppressive activity of M-MDSCs in tumor tissues. Suppressive activity of M-MDSCs in tumors was retained due to the effect of IL-6 present at high concentrations in the tumor site. These results demonstrate disease- and population-specific mechanisms of MDSC accumulation and the need for targeting different pathways to achieve inactivation of these cells.


Subject(s)
Myeloid-Derived Suppressor Cells/immunology , Neoplasms/immunology , Virus Diseases/immunology , Animals , Cell Line, Tumor , Chronic Disease , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/immunology , Female , Humans , Immune Tolerance/genetics , Interferon-gamma/immunology , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/classification , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/pathogenicity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Derived Suppressor Cells/classification , Myeloid-Derived Suppressor Cells/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Transcriptome , Virus Diseases/genetics , Virus Diseases/metabolism
17.
J Biol Chem ; 296: 100781, 2021.
Article in English | MEDLINE | ID: mdl-34000298

ABSTRACT

The unfolded protein response plays an evolutionarily conserved role in homeostasis, and its dysregulation often leads to human disease, including diabetes and cancer. IRE1α is a major transducer that conveys endoplasmic reticulum stress via biochemical signals, yet major gaps persist in our understanding of how the detection of stress is converted to one of several molecular outcomes. It is known that, upon sensing unfolded proteins via its endoplasmic reticulum luminal domain, IRE1α dimerizes and then oligomerizes (often visualized as clustering). Once assembled, the kinase domain trans-autophosphorylates a neighboring IRE1α, inducing a conformational change that activates the RNase effector domain. However, the full details of how the signal is transmitted are not known. Here, we describe a previously unrecognized role for helix αK, located between the kinase and RNase domains of IRE1α, in conveying this critical conformational change. Using constructs containing mutations within this interdomain helix, we show that distinct substitutions affect oligomerization, kinase activity, and the RNase activity of IRE1α differentially. Furthermore, using both biochemical and computational methods, we found that different residues at position 827 specify distinct conformations at distal sites of the protein, such as in the RNase domain. Of importance, an RNase-inactive mutant, L827P, can still dimerize with wildtype monomers, but this mutation inactivates the wildtype molecule and renders leukemic cells more susceptible to stress. We surmise that helix αK is a conduit for the activation of IRE1α in response to stress.


Subject(s)
Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Cell Line , Endoribonucleases/chemistry , Humans , Models, Molecular , Protein Conformation, alpha-Helical , Protein Domains , Protein Multimerization , Protein Serine-Threonine Kinases/chemistry , Ribonucleases/metabolism
18.
Trends Cell Biol ; 31(7): 529-541, 2021 07.
Article in English | MEDLINE | ID: mdl-33685797

ABSTRACT

The biosynthesis of about one third of the human proteome, including membrane receptors and secreted proteins, occurs in the endoplasmic reticulum (ER). Conditions that perturb ER homeostasis activate the unfolded protein response (UPR). An 'optimistic' UPR output aims at restoring homeostasis by reinforcement of machineries that guarantee efficiency and fidelity of protein biogenesis in the ER. Yet, once the UPR 'deems' that ER homeostatic readjustment fails, it transitions to a 'pessimistic' output, which, depending on the cell type, will result in apoptosis. In this article, we discuss emerging concepts on how the UPR 'evaluates' ER stress, how the UPR is repurposed, in particular in B cells, and how UPR-driven counter-selection of cells undergoing homeostatic failure serves organismal homeostasis and humoral immunity.


Subject(s)
Endoplasmic Reticulum , Immunity, Humoral , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Homeostasis , Humans , Unfolded Protein Response
19.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33591954

ABSTRACT

Podocytes are key to the glomerular filtration barrier by forming a slit diaphragm between interdigitating foot processes; however, the molecular details and functional importance of protein folding and degradation in the ER remain unknown. Here, we show that the SEL1L-HRD1 protein complex of ER-associated degradation (ERAD) is required for slit diaphragm formation and glomerular filtration function. SEL1L-HRD1 ERAD is highly expressed in podocytes of both mouse and human kidneys. Mice with podocyte-specific Sel1L deficiency develop podocytopathy and severe congenital nephrotic syndrome with an impaired slit diaphragm shortly after weaning and die prematurely, with a median lifespan of approximately 3 months. We show mechanistically that nephrin, a type 1 membrane protein causally linked to congenital nephrotic syndrome, is an endogenous ERAD substrate. ERAD deficiency attenuated the maturation of nascent nephrin, leading to its retention in the ER. We also show that various autosomal-recessive nephrin disease mutants were highly unstable and broken down by SEL1L-HRD1 ERAD, which attenuated the pathogenicity of the mutants toward the WT allele. This study uncovers a critical role of SEL1L-HRD1 ERAD in glomerular filtration barrier function and provides insights into the pathogenesis associated with autosomal-recessive disease mutants.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Glomerular Filtration Rate , Membrane Proteins/metabolism , Podocytes/metabolism , Animals , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Mice , Mice, Transgenic , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Proteins/genetics , Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
20.
Cell Mol Immunol ; 18(3): 632-643, 2021 03.
Article in English | MEDLINE | ID: mdl-33500563

ABSTRACT

Stimulator of interferon genes (STING)-mediated innate immune activation plays a key role in tumor- and self-DNA-elicited antitumor immunity and autoimmunity. However, STING can also suppress tumor immunity and autoimmunity. STING signaling in host nonhematopoietic cells was reported to either protect against or promote graft-versus-host disease (GVHD), a major complication of allogeneic hematopoietic cell transplantation (allo-HCT). Host hematopoietic antigen-presenting cells (APCs) play key roles in donor T-cell priming during GVHD initiation. However, how STING regulates host hematopoietic APCs after allo-HCT remains unknown. We utilized murine models of allo-HCT to assess the role of STING in hematopoietic APCs. STING-deficient recipients developed more severe GVHD after major histocompatibility complex-mismatched allo-HCT. Using bone marrow chimeras, we found that STING deficiency in host hematopoietic cells was primarily responsible for exacerbating the disease. Furthermore, STING on host CD11c+ cells played a dominant role in suppressing allogeneic T-cell responses. Mechanistically, STING deficiency resulted in increased survival, activation, and function of APCs, including macrophages and dendritic cells. Consistently, constitutive activation of STING attenuated the survival, activation, and function of APCs isolated from STING V154M knock-in mice. STING-deficient APCs augmented donor T-cell expansion, chemokine receptor expression, and migration into intestinal tissues, resulting in accelerated/exacerbated GVHD. Using pharmacologic approaches, we demonstrated that systemic administration of a STING agonist (bis-(3'-5')-cyclic dimeric guanosine monophosphate) to recipient mice before transplantation significantly reduced GVHD mortality. In conclusion, we revealed a novel role of STING in APC activity that dictates T-cell allogeneic responses and validated STING as a potential therapeutic target for controlling GVHD after allo-HCT.


Subject(s)
Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Graft vs Host Disease/pathology , Hematopoietic Stem Cell Transplantation/adverse effects , Intestines/pathology , Membrane Proteins/physiology , Animals , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/metabolism , Intestines/immunology , Intestines/metabolism , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...